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Universal features in sequential and nonsequential two-photon double ionization of helium
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We analyze two-photon double ionization of helium in both the nonsequential (h̄ω < I2 ≈ 54.4 eV) and
sequential (h̄ω > I2) regime. We show that the energy spacing �E = E1 − E2 between the two emitted electrons
provides the key parameter that controls both the energy and the angular distribution and reveals the universal
features present in both the nonsequential and sequential regime. This universality, i.e., independence of h̄ω, is
a manifestation of the continuity across the threshold for sequential double ionization. For all photon energies
considered, the energy distribution can be described by a universal shape function that contains only the spectral
and temporal information entering second-order time-dependent perturbation theory. Angular correlations and
distributions are found to be more sensitive to the value of h̄ω. In particular, shake-up interferences have a
large effect on the angular distribution. Energy spectra, angular distributions parametrized by the anisotropy
parameters βj , and total cross sections presented in this paper are obtained by fully correlated time-dependent
ab initio calculations.
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I. INTRODUCTION

Two-photon double ionization (TPDI) of helium is a
prototype process for the study of electron correlation. The
advent of ultrashort and intense light sources with sufficient
photon flux [1–11] offers the opportunity to investigate TPDI
over a wide range of energies, from direct (nonsequential)
to sequential ionization. For photon energies below I2 ≈
54.4 eV, the second ionization potential of helium, one photon
does not carry sufficient energy to ionize the residual He+

ion in its ground state. After the first ionization event below
this threshold, the second photoabsorption event has to occur
within a short time interval such that the outgoing electrons
can exchange energy for the double-ionization process to take
place.

Above this threshold, sequential double ionization (SDI)
becomes possible: the first photon singly ionizes the helium
atom and the second photon ionizes the remaining He+ ion,
each of which constitutes a separate on-shell process. The time
interval elapsed between the two photoabsorption events and,
thus, between the electron emission events can be, in principle,
arbitrarily long. For pulses of sufficient duration, the sequential
process can be qualitatively described within an independent
particle picture, while quantitative details are influenced by
electron-electron interactions [12–24].

By contrast, electron correlation is an indispensable con-
dition for the direct nonsequential double ionization (NSDI)
process to occur. Therefore, much effort has been spent on
investigations of electron correlation in the nonsequential
regime. So far, partially integrated quantities and total cross
sections have been measured [5,25–28]. Several theoretical
studies of fully differential cross sections have been presented
[12–14,29–34]. However, even on the level of total cross sec-
tions, the different theoretical approaches lead to differences
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of more than one order of magnitude [12,14–17,31,33,35,36].
The reasons for these discrepancies are still under debate
and the experiments could, up to now, not reach the needed
accuracy to resolve them. The extraction of cross sections
close to the threshold for sequential ionization has remained a
challenging problem.

The focus of the present paper is on the close similarity
and underlying common features of the NSDI below the
threshold I2 and the SDI above the threshold I2. While the
continuity across thresholds is appreciated as a consequence
of the analyticity of the S-matrix and is frequently involved
in the determination of threshold exponents (Wigner and
Wannier exponents [37,38]), its implication for energy and
angular distributions in the TPDI process has, so far, not been
systematically explored. Investigations in the region below
the threshold for sequential ionization were presented in, e.g.,
[16,33] for energy distributions and in [34] also for angular
distributions.

We show that energy distributions and, to a considerable
extent, also angular distributions of TPDI display universal
features present both above and below the threshold for SDI.
These universal features become obvious when observables
are analyzed in terms of the energy spacing (or asymmetry of
energy sharing) �E = E1 − E2 of the two outgoing electrons.
The significance of this parameter controlling the double
ionization irrespective of the value of h̄ω can be understood
within the framework of second-order time-dependent
perturbation theory.

Application to angular distributions characterized by
anisotropy parameters βj shows that �E still plays a signif-
icant role, even though the βj refer to reduced one-electron
variables. The latter are of experimental relevance, as a
coincidence measurement is not required, at least for electron
energies where the spectrum is not dominated by single ion-
ization. We compare the single-electron angular distribution
of TPDI with some results from earlier calculations [18,19,39]
and find significant differences.
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Unless otherwise stated, atomic units will be used through-
out the text.

II. METHOD

In our computational approach (see [31,40,41] for a more
detailed description) we solve the time-dependent Schrödinger
equation in its full dimensionality, including all interparticle
interactions. We employ a time-dependent close-coupling
scheme [20,29,30,42], where the angular part of the wave
function is expanded in coupled spherical harmonics. In order
to reach convergence in the angular coordinates, we use single-
electron angular momenta up to values of l1,max = l2,max = 10.
The highest total angular momentum included in the time
propagation is typically Lmax = 2, which is sufficient since
only the two-photon channels L = 0 and L = 2 play a sig-
nificant role. We checked explicitly that using Lmax = 3 does
not change the results presented, providing clear evidence that
lowest-order perturbation theory in the photon field provides
the dominant contribution. For the discretization of the two
radial variables, we employ a finite element discrete variable
representation (FEDVR) [43–46]. The sparse structure of the
resulting matrices allows for efficient parallelization, which is
crucial to obtain results in the long-pulse limit (up to more
than 20 femtoseconds propagation time). Radial boxes with
an extension of up to rmax = 2000 a.u. containing FEDVR
elements with lengths of 4–4.4 a.u. and of order 11 are used
for the presented results. For the temporal propagation of
the wave function, we employ the short iterative Lanczos
method [47–49] with adaptive time-step control.

The laser field is assumed to be linearly polarized and
treated in dipole approximation. The interaction operator is
implemented in both length and velocity gauge, such that
gauge independence can be explicitly verified. We choose the
temporal shape of the vector potential to be of the form

A(t) = ẑA0 sin2

(
πt

2T

)
sin(ωt) (1)

for 0 < t < 2T . The full width at half maximum (FWHM) of
the sin2 envelope function has the duration T . A peak intensity
of I0 = 1012 W/cm2 ensures that ground-state depletion and
three- or higher-order photon effects are negligible.

The asymptotic momentum distribution is obtained by pro-
jecting the wave packet onto products of Coulomb continuum
states. These independent-particle Coulomb wave functions
are not solutions of the full Hamiltonian. However, as we have
previously demonstrated, projection errors can be controlled
and reduced to the one-percent level by delaying the time
of projection until the two electrons are sufficiently far apart
from each other [31]. All results were tested for numerical
convergence and gauge independence.

III. SHAPE FUNCTION FOR TWO-PHOTON
DOUBLE IONIZATION

The point of departure of our analysis of common features
of TPDI above and below the sequential threshold observed
in the numerical calculations is the spectral shape function
within second-order time-dependent perturbation theory. The
applicability of the latter is indicated by the negligibly

small contributions of three-photon (or higher-order) pro-
cesses. Similar approaches have been employed previously;
see [12,16,24] and references therein. To second order, the
amplitude of the transition driven by the extreme ultraviolet
(xuv) pulse is

t
(2)
i→f = −

∑∫
n

∫ tf

t0

dt1

∫ t1

t0

dt2e
iEf nt1eiEni t2

×〈f |V̂ (t1)|n〉〈n|V̂ (t2)|i〉, (2)

with Ef n = Ef − En and Eni = En − Ei . The transition
probability for TPDI is P DI(E1,�1,E2,�2) = |t (2)

i→f |2, where
|i〉 is the ground state and |f 〉 = |E1�1,E2�2〉. Insertion
of the interaction operator in velocity gauge, V̂ (t) = (p̂z,1 +
p̂z,2)A(t) ≡ µ̂A(t), leads to a factorization of each term in the
sum over intermediate states into a spectral function G that just
depends on the energies of the involved states and the temporal
shape of the interaction potential, and a time-independent
matrix element depending on two dipole operators,

t
(2)
i→f = −

∑∫
n

〈f |µ̂|n〉〈n|µ̂|i〉G{Ef n,Eni,[A(t)]}, (3a)

with

G{Ef n,Eni,[A(t)]} =
∫ tf

t0

dt1

∫ t1

t0

dt2e
iEf nt1eiEni t2A(t1)A(t2).

(3b)

Employing the rotating-wave approximation and using the
temporal shape of the pulse [Eq. (1)], Eq. (3b) becomes

Gsin2 (�Ef n,�Eni,A0,T )

= A2
0

4

∫ 2T

0
dt1

∫ t1

0
dt2F (�Ef n,t1,T )F (�Eni,t2,T ), (4a)

with

F (χ,t,T ) = ei χ t sin2

(
πt

2T

)
, (4b)

where �Ef n = Ef n − ω and �Eni = Eni − ω. The latter
variables denote the energy defects relative to the energy-
conserving on-shell transition in each of the two steps. The
integral can be solved analytically, but the result is not shown
here for brevity.

Above the sequential threshold (h̄ω > I2) and for infinitely
long pulses T → ∞ the angle-integrated joint transition
probability P DI(E1,E2) is governed by G(�Ef n = 0,�Eni =
0,A0,∞), i.e., the on-shell part of the transition amplitude. We
note, however, that this limit is correct only to lowest-order
perturbation theory, in particular when depletion remains
negligible. Lifetime and depletion corrections [50] [not in-
cluded in Eq. (4)] play a role for pulse durations reaching
the order of the lifetime of the involved states (T > γ −1

i≈ 5000 fs for He in 40 eV 1012 W/cm2 radiation). For short
pulses and/or h̄ω < I2, the behavior of P DI(E1,E2) is con-
trolled by the deviations �Ef n �= 0 and �Eni �= 0. Equation
(3a) can be further simplified by noting that among all possible
intermediate states, the continuum states |Ep,1s〉 associated
with the ionic ground state and an outgoing p-wave strongly
dominate. In other words, shake-up or shake-off processes only
represent a few-percent correction in the SDI regime.
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We further make the approximation that the transition
amplitude from the intermediate to the final state is di-
agonal in the energy E1 of the free electron, i.e., that
〈E1�1,E2�2|µ̂|E′

1p,1s〉 ∝ δ(E′
1 − E1). Consequently, a sin-

gle term |n0〉 ≡ |E1p,1s〉 in the sum over intermediate states
provides the leading contribution.

Instead of using an independent-particle approximation for
the transition matrix elements (as in [12,16]), we approximate
them by a constant. This is sufficient if one is only interested
in the shape of the final electron energy distribution. The
transition probability to the final energies (E1,E2) in this
approximation is given by

P DI
G (E1,E2) = C

∣∣Gsin2

(
�E

f n
(1)
0

,�E
n

(1)
0 i

,T
)

+Gsin2

(
�E

f n
(2)
0

,�E
n

(2)
0 i

,T
)∣∣2

, (5)

with �E
f n

(1)
0

= Ef − (E1 + E(1s) + ω), �E
f n

(2)
0

= Ef −
(E2 + E(1s) + ω), and corresponding expressions for �E

n
(k)
0 i

.
Accordingly, Eq. (5) can be rewritten as

P DI
G (E1,E2) = P DI

G (�E,Etotal), (6)

with �E = E1 − E2. In the limit T → ∞, the total energy
of the final state Etotal = E1 + E2 = 2h̄ω + E0 is determined
by the photon energy and the ground-state energy of helium,
E0 ≈ −79 eV. For short pulses with finite Fourier width, the
distribution of Etotal is broadened accordingly. The reduced
probability density as a function of �E follows after integra-
tion over the Fourier width as

P DI
G (�E) = 1

2

∫
P DI
G (E1,E2) dEtotal (7)

(with a factor 1/2 from the Jacobi determinant of the coordi-
nate transformation). For long pulses, this projection through

the (E1,E2) plane closely approximates the conventional
one-electron energy distribution. Equation (7) has a distinct
advantage when comparing pulses with different photon
energies: the sequential peaks at h̄ω − I1 and h̄ω − I2 always
show up at the same positions ±(I1 − I2), irrespective of the
photon energy.

We refer to Eq. (5) as the shape function for double
ionization. It contains both spectral information of the time-
independent fully correlated two-electron Hamiltonian and the
temporal structure of the pulse. It thus depends on the energy
exchange between the two electrons included via ionization
potentials that depend on the presence of the second electron,
i.e., I1 �= I2. However, no additional information on electron
correlations, in particular angular correlations, is included.

In Fig. 1, we compare P DI
G (�E) [Eq. (7)] with the

numerically determined exact solution of the time-dependent
Schrödinger equation for a wide range of photon energies
42 eV � h̄ω � 80 eV covering both the NSDI and SDI
regimes with a pulse duration of T = 4.5 fs. For better
comparison of the results at different photon energies, we have
normalized each curve to the value at �E = 0.

The excellent agreement with P DI
G (�E) for energy differ-

ences smaller than |�E| ≈ 45 eV irrespective of the value of
h̄ω exhibits the universal features present both in the SDI and
NSDI process [note that the deviations visible for larger |�E|
result from the neglect of intermediate shake-up states in the
sum in Eq. (3a)]. Nonvanishing emission probabilities far away
from the “sequential” peaks with �Ef n = �Eni = 0 signify
energy sharing via electron-electron interaction irrespective
of whether the sequential peaks are energetically accessible
or not. Thus, also for pulses in the nominally sequential
regime (h̄ω > I2), a large part of the final-state space can
only be accessed through energy sharing that is governed by
electron-electron interaction and thus closely resembles the

E
2

(e
V

)

E1 (eV)

(c)

E
2

(e
V

)

(b)

∆E (eV)

n = 3 n = 3n = 4 n = 4

P
D

I
(∆

E
)/
P

D
I
(∆

E
=

0)

(a)

0

20

40

60

80

0 20 40 60 80
10−6

10−5

10−4

10−3

10−2

0

5

10

15

0 5 10 15
10−5

10−4

10−3

PDI G
80 eV
70 eV
54 eV
58 eV
48 eV
42 eV

10−1

100

101

102

103

-80 -60 -40 -20 0 20 40 60 80

I2−I1−2E2 I1−I2 I2−I1 I1−I2+2E2

FIG. 1. (Color online) (a) Singly differential energy distribution P DI(�E) as a function of the energy difference �E = E1 − E2, normalized
to the yield at �E = 0 for photon energies between 42 and 80 eV. The pulses had a duration T = 4.5 fs and an intensity I0 = 1012 W/cm2.
The gray lines show the expected positions of the peaks for the sequential process for different intermediate states (i.e., with and without
shake up). Here, En is the excitation energy from the ionic n = 1 state to an excited state n (E2 ≈ 40.8 eV). The black line shows the energy
distribution based on second-order perturbation theory P DI

G (�E), calculated for the same pulse parameters as in the numerical simulations
(sin2 pulse with T = 4.5 fs). (b) and (c) show the two-electron energy distribution P DI(E1,E2) on the log scale for (b) h̄ω = 48 eV and
(c) h̄ω = 80 eV.
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NSDI process. Only in the immediate vicinity of the on-shell
peaks �Ef n = �Eni = 0, the width of which decrease as T −1,
do SDI and NSDI processes become distinct.

IV. ANGULAR DISTRIBUTIONS

We now extend the analysis of the double-ionization (DI)
probability as a function of �E to a second degree of
freedom—the emission angle of one of the emitted electrons
with respect to the laser polarization axis, θ . Conventionally,
the one-electron TPDI distribution P DI(E,θ ) is considered,
which is obtained by integrating the full two-electron distri-
bution P DI(E1,E2,�1,�2) over the energy and angle of one
electron. This corresponds to measuring electrons without
coincidence requirements. Following our findings that the
TPDI distribution depends primarily on �E, we therefore
investigate in the following P DI(�E,θ1). Two features are
worth noting: since �E ≈ 2E1 − (E0 + 2h̄ω), the switch
from E1 to �E corresponds to a coordinate shift in the
limiting case of long pulses, i.e., narrow Fourier width of
h̄ω. Furthermore, since only the angle of one electron (θ1)
is observed, P DI(�E,θ1) is, unlike P DI(�E), not symmetric
under inversion �E → −�E.

The one-electron distribution has cylindrical symmetry
(i.e., φ is cyclic), and can be parametrized in terms of
the anisotropy parameters βj obtained from expanding
P DI(ω,�E,θ1) in Legendre polynomials Pl(cos θ1),

P DI(ω,�E,θ1)=P DI(ω,�E)
∞∑

j=0

βj (ω,�E)Pj (cos θ1). (8)

In the following, we will label the anisotropy parameters βj ,
β = β2, and γ = β4 (as, e.g., in [18]). For two-photon double
ionization from the ground state, the coefficients of Legendre

polynomials with j > 4 vanish. In addition, odd multipoles βj

vanish because of parity conservation. Consequently,

P DI(ω,�E,θ1) = P DI(ω,�E)[1 + β(ω,�E)P2(cos θ1)

+ γ (ω,�E)P4(cos θ1)], (9)

where we have indicated the explicit dependence of the
angular distribution and anisotropy parameters on the photon
energy h̄ω.

For uncorrelated sequential emission with the ground ionic
state as intermediate state, i.e., if each electron independently
absorbs one photon from a 1s state, we expect a dipole-like
cos2(θ ) distribution for both electrons. This corresponds to
β = 2 and γ = 0. For deviations from this scenario, in
particular correlated and temporarily confined joint emission,
these values are modified.

In one-photon DI of He, for example, the photon can only
be absorbed by one electron, while the second electron is
mainly released due to shake off. Experiments (cf. [51] and
references therein) showed that indeed β is approximately zero
for the slow electron, showing a clear sign of the isotropic
shake-off process. Note that γ is always zero for one-photon
processes. For h̄ω close to the one-photon DI threshold (h̄ω >∼
79 eV), β is theoretically predicted to be close to β ≈ −1 [52]
and also experimentally found to be negative (see e.g., [53]
and references therein), indicating a preference for emission
perpendicular to the polarization axis.

For two-photon DI, a completely different scenario prevails.
For photon energies well below the threshold for sequential
ionization, the energy distribution is flat, similar to that of
the one-photon process. However, the angular distribution
differs strongly. This is to be expected because of the different
number of photons absorbed and, thus, the different amount
of angular momentum transferred. The one-electron angular
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FIG. 2. (Color online) (a) Anisotropy parameters β(ω,�E) and γ (ω,�E) [see Eq. (9)] for photon energies between 42 and 80 eV as a
function of the energy difference �E = E1 − E2 in the interval [−Etot,Etot], with Etot = 2h̄ω + E0 and E0 ≈ −79 eV. The pulse parameters
are the same as in Fig. 1. The upper group of lines contains the β parameters, while the lower group contains the values for γ . Note that the
angular distribution of the electron with E1 is shown; thus �E > 0 characterizes the faster electron and �E < 0 the slower one. (b) Angular
distribution at equal energy sharing P DI(�E = 0,θ ) for h̄ω = 42, 48, and 70 eV [from inside to outside, same color code as in (a)], normalized
to a value of 1 for θ = 0◦. The laser polarization axis is indicated by the arrow. The black solid line shows a cos2(θ ) distribution.
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distribution at equal energy sharing, P DI(�E = 0,θ1), for
different photon energies [Fig. 2(b)] closely resembles a Hertz-
dipole distribution (∼ cos2 θ , thin black line), suggesting that
each electron absorbs one photon (in agreement with previous
findings [21,32]). Although the electrons have to strongly
exchange energy to reach equal energy sharing, this interaction
does not leave a visible trace in the one-electron angular
distribution. The one-electron angular distribution does not
provide detailed information on the correlated emission, unlike
observables related to the joint two-electron distribution, such
as the triply differential cross section (TDCS) (see [21,31] and
references therein), the forward-backward asymmetry between
the electrons [22], or the angle θ12 between the electrons (as
will be discussed below; see Fig. 6).

The energy-differential one-electron angular distribution
characterized by β(ω,�E) and γ (ω,�E) for different photon
energies h̄ω between 42 and 80 eV [Fig. 2(a)] displays a
remarkably similar dependence on �E but, unlike the energy
distribution, also noticeable variations with h̄ω.

Deviations from the uncorrelated limit (β = 2, γ = 0)
are most pronounced for slow electrons (h̄ω = 42 eV, with
only 2.5 eV emission energy per electron above the double-
ionization threshold). Hence emission perpendicular to the
polarization axis can be observed with γ = 0.6 and β = 1.6.
As mentioned above, the anisotropy parameters are not sym-
metric relative to �E = 0. The reason is that we observe the
angular distribution of the “first” electron: P DI(E1 − E2,θ1).
For �E < 0, we observe the slower electron, while for
�E > 0 we observe the faster one. The electron repulsion
force, i.e., the acceleration due to the interaction with the other
electron, is the same for both electrons. However, the relative
momentum change due to the interaction is much larger for
the electron with the smaller momentum.

For somewhat higher photon energies (h̄ω � 48 eV), the
distribution mainly approaches the Hertz-dipole–like cos2 θ

distribution with little difference between the NSDI and SDI
regime, highlighting the continuity across the SDI threshold
also in the angular distribution. Furthermore, the distribution
becomes approximately symmetric (�E → −�E) for larger
h̄ω. In the sequential regime, an asymmetry in �E remains
visible but confined to large asymmetric energy sharings
(|�E| → Etot), where one electron is again slow. However, the
ionization yields become very small for this case (see Fig. 1).

We focus in the following on the anisotropy param-
eters for mean photon energies above the DI threshold
(h̄ω > 79 eV) and consider both “long” pulses (T = 4.5 fs)
and attosecond pulses (T < 500 as). For pulses of a few
femtoseconds duration, dynamically induced Fano resonances
due to interferences between NSDI via the ionic ground state
and SDI via shake-up intermediate states are present [12,22].
Note that, in the limit of both ultrashort and long pulses, these
interferences disappear as one of the two pathways becomes
dominant (the nonsequential background for T → 0 and the
sequential shake-up peak for T → ∞).

The Fano resonance structure is also visible in the
one-electron angular distribution. The two-dimensional
one-electron energy- and angle-differential distribution
P DI(�E,θ1) (Fig. 3) reveals the resonant variation with �E

at fixed θ1. At θ1 = π/2, the distribution has a narrow local
maximum at energies where the sequential ionization process
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FIG. 3. (Color online) Two-dimensional energy-angular differen-
tial distribution P DI(�E,θ1) for an xuv pulse with T = 4.5 fs and
h̄ω = 80 eV as a function of the energy difference �E = E1 − E2

between the two electrons, and emission angle θ1, relative to the
polarization axis. The vertical dashed white lines show the expected
positions of the peaks for the sequential process; see Fig. 1. The
horizontal nodal line θ1 = π/2 is visible except near shake-up
resonances.

with shake up in the intermediate state contributes. Outside
the shake-up resonance position, the persistence of the nodal
lines of the Hertz dipole at θ1 = π/2 [see Fig. 2(b)] is clearly
visible.

Significant deviations can be observed only for energy
sharings that correspond to resonant shake-up intermediate
states (n = 2 and n = 3) for which higher angular momen-
tum (l > 0) states can be populated. Thus strong angular
momentum mixing and deviations from an s-like initial (or,
in this case, intermediate) state can occur. In turn, outside
these shake-up resonances, the conservation of the nodal
line of the Hertz dipole at θ1 = 90◦ is pronounced. This
observation suggests that the β and γ parameters as a function
of �E (or E1, used in the following) are strongly interre-
lated. Enforcing vanishing emission probability at θ = π/2
implies

γ ′(E1) = 8

3

(
β(E1)

2
− 1

)
. (10)

The symmetry-enforced value of γ ′(E1) using the cal-
culated values of β(E1) as input according to Eq. (10)
agrees remarkably well with the directly calculated γ (E1),
in particular in between the n = 1 sequential main peaks
[Fig. 4(a)]. Exactly at the sequential peak, we obtain β = 2
and γ = 0 as expected from the independent-particle process,
where the angular distribution is an uncorrelated product of
cos2 θ . Outside the main sequential peaks with increasingly
asymmetric energy sharing, the angular distribution becomes
elongated along the polarization axis, which is reflected in
larger discrepancies between γ ′(E1) and γ (E1). The elongated
emission pattern can be qualitatively explained by the fact
that highly asymmetric energy sharing can be reached through
postcollision interaction (cf. [54,55]), which is most effective
when both electrons are emitted collinearly along the laser
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FIG. 4. (Color online) (a) Anisotropy parameters β(E1) and γ (E1) as well as γ ′(E1) (dashed line), which according to Eq. (10) enforces
vanishing probability of electron ejection at 90◦ to the polarization axis. (b)–(f) show angle-resolved one-electron distributions at different
electron energies, normalized to a value of 1 for θ = 0◦: (b) equal energy sharing, (c) asymmetric energy sharing, (d) main sequential peak
(intermediate state: |He+1s〉), (e) second sequential peak (intermediate state: |He+2l〉), and (f) third sequential peak (intermediate state:
|He+3l〉). Parameters: central frequency h̄ω = 80 eV and duration T = 4.5 fs. The thin black line in (b)–(f) shows a cos2 distribution.

polarization axis. The high-energy electrons are thus expected
to belong to the subset of electrons at small angles, explaining
the elongated angular distribution.

For extremely unequal energy sharing, we find a striking
change of the anisotropy parameters at the positions where
sequential ionization through an intermediate shake-up state
is possible [Figs. 4(e) and 4(f)]. These peaks and dips can
be observed up to the n = 4 shake up with the current pulse
parameters. They are due to the fact that the intermediate
ionic state for the sequential process can have higher angular
momentum (l �= 0). Hence, for e.g., shake up to np states,
the outgoing two-electron wave is not even approximately
described by a (p,p) wave, but is dominated by the (s,d)
contribution. The interference between different intermediate
state channels leading to the same final state gives rise to the
complex angular distribution [Figs. 4(e) and 4(f) for the shake
up to intermediate states n = 2 and n = 3, respectively].

The present calculation of anisotropy parameters for TPDI
can be compared with two previously published results for

long pulses [19] and for attosecond pulses [18]. Comparison
between the long-pulse limit of our present calculations
(converged results are reached for T = 4.5 fs) and recent
time-independent results by Ivanov et al. [19] [Fig. 5(a)]
show reasonably good agreement near equal energy sharing.
However, because of the limitations and approximations
in the convergent close-coupling method [19], such as the
inequivalent treatment of the slow and fast electron, the
intricate structures due to shake-up interferences appear to
be missing.

For ultrashort attosecond pulses, dynamical resonance
structures are washed out. At the same time, the strong
temporal confinement of the two electron emission events
induces strong electron correlations and renders the distinction
between sequential and nonsequential DI largely obsolete. The
effect of the temporal confinement to within a few hundred
attoseconds on the angular distribution is therefore of partic-
ular interest. We compare the one-electron angular anisotropy
parameters for an xuv pulse with h̄ω = 91.6 eV (previously
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FIG. 5. (Color online) Anisotropy parameters β (upper group of lines and squares) and γ (lower group of lines and circles) for TPDI
in the sequential regime with an xuv pulse with (a) h̄ω = 90 eV in the long pulse limit and T = 4.5 fs (FWHM–sin2 pulse envelope), in
comparison with recent time-independent results by Ivanov et al. [19], and (b) h̄ω = 91.6 eV for ultrashort pulse durations T = 150 and 450
as (FWHM–Gaussian pulse envelope), in comparison with the calculations of Barna et al. [18].

investigated in [18,20,23]) and a pulse duration of T = 150
and 450 as (FWHM of the Gaussian pulse envelope) with
previous results by Barna et al. [18]. At the sequential peak,
we find rather good agreement [Fig. 5(b)]. However, for equal
energy sharing, the calculation by Barna et al. considerably
overestimates correlation effects. This is probably due to two
reasons: (i) the angular distribution in [18] was determined
right at the end of the pulse when the electron momenta
have not yet converged to their asymptotic values, and
(ii) only single electron angular momenta up to l1,max =
l2,max = 2 were included, which is not sufficient for converged
angular distributions (see [31] for a detailed study of the
convergence of TDCS with angular momentum). The most
striking difference is the absence of the nodal line at θ = π/2
in [18], which we find to be well preserved for attosecond
pulses. The preservation of the nodal line suggests that for the
limit of ultrashort pulses, TPDI proceeds by the absorption
of one photon per electron as has been previously observed
[21,32]. Strong interaction between two almost simultaneously
outgoing electrons leads to strong energy redistribution but

leaves the nodal line in the angular distribution, to a good
degree of approximation, intact.

V. ANGULAR CORRELATION

Correlation effects in the spatial anisotropy of TPDI are
expected to be more pronounced in two-electron observables
derived from the joint probability density P DI(E1,�1,E2,�2).
Following the observation that the energy spacing �E governs
the electronic dynamics both below and above the SDI
threshold [Eqs. (5) and (7)], we first integrate over Etotal =
E1 + E2 to arrive at the reduced probability P DI(�E,�1,�2)
as a function of the energy sharing �E. As a measure of
the angular correlation between the two outgoing electrons,
we choose to investigate the angle θ12 between the electrons.
The expectation value 〈cos θ12〉 provides a suitable quantity
to measure the asymmetry in the joint angular distribution. A
negative value of 〈cos θ12〉 indicates back-to-back emission,
while for positive 〈cos θ12〉 the electrons are emitted into the
same hemisphere.
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FIG. 6. (Color online) Angular correlation characterized by the expectation value of the angle between the emitted electrons, 〈cos θ12〉 as a
function of (�E) for photon energies between 42 and 80 eV (the other field parameters are the same as in Figs. 1 and 2).
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This measure displays, as a function of �E, very similar
features over a wide range of photon energies, 42–80 eV, for
a pulse duration of T = 4.5 fs (Fig. 6). Regardless of the
photon energy, the electrons are strictly emitted back-to-back
between the main peaks of sequential ionization with the ionic
intermediate ground state He+(1s) and in the same direction
for energy sharing outside the main peaks at ±(I1 − I2). For
photon energies below the SDI threshold 〈cos θ12〉 is strictly
negative, implying that electrons are predominantly emitted
back-to-back in the NSDI regime. We note that, in contrast to
our findings, in [34] emission of both electrons in the same
direction for a mean photon energy of 50 eV, well below the
sequential threshold, was observed. This was probably due
to admixtures from the sequential process due to the large
bandwidth (≈7 eV) of the short pulse used.

Despite the apparent similarity of the �E dependence of
the asymmetry (Fig. 6) and the anisotropy parameters (Figs. 2
and 4), we emphasize one key difference: the behavior of
〈cos θ12〉 as a function of (�E) is controlled by two-particle
correlations, while β(�E) and γ (�E) are one-electron
variables. Unlike the anisotropy parameters, in the strictly
sequential regime T → ∞ when the emission is confined to
the peaks of on-shell ionic intermediate states, 〈cos θ12〉(�E)
would approach zero. The onset of this uncorrelated limit can
be observed for moderately long pulses (Figs. 6 and 7): at the
energy difference �E corresponding to the sequential process
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FIG. 7. (Color online) Energy distribution divided by the pulse
duration P DI(�E)/T , anisotropy parameters β, γ , and 〈cos θ12〉 as a
function of �E for two different pulse durations: T = 4.5 fs (blue
dashed line) and T = 10 fs (red solid line) and h̄ω = 80 eV.

with the intermediate ionic ground state, the asymmetry goes
to zero: 〈cos θ12〉(�E) = 0.

We conclude our discussion of the various distributions as a
function of �E by comparing two different pulse durations in
the long-pulse limit (T = 4.5 and 10 fs) for a photon energy
h̄ω = 80 eV. Figure 7 shows the energy distribution divided
by the pulse duration P DI(�E)/T , the anisotropy parameters
β, γ , and 〈cos θ12〉(�E). All three distributions show that
convergence with pulse duration is already reached for
T = 4.5 fs over a wide range of energy sharing. This un-
derscores the linear scaling of the energy distribution for
nonsequential ionization, i.e., for all intermediate states that are
off-shell. Only close to the peaks of the sequential process do
the two distributions deviate from each other. At the position
of the resonances, the yield scales quadratically with pulse
duration, leading to a growth of the sequential contribution
with respect to the nonsequential background. An interesting
consequence of this can be observed for the n = 3 shake-up
interference in Fig. 7 (see inset), where the dip in the Fano
resonance for T = 4.5 fs turns into a peak for T = 10 fs.

Similarly, the (joint) angular distributions are converged
in the purely nonsequential regions. In contrast, the resonant
features at the sequential peaks get more pronounced for the
longer pulse since the sequential contributions scale as T 2,
whereas the nonsequential background scales linearly with T .
For example, for a pulse duration of T = 10 fs, 〈cos θ12〉(�E)
approaches the long pulse limit 〈cos θ12〉 = 0 at the shake-up
sequential peaks for n = 2 and 3, while it is still nonzero for
the shorter pulse.

VI. TOTAL CROSS SECTIONS

We finally address the consequences of the continuity
across the SDI threshold for angle-integrated cross sections
for pulses with femtoseconds duration. The starting point is
the shape function [Eqs. (4) and (5)]. The continuity across
the SDI threshold is explicitly incorporated by the assumption
of constant (or smoothly varying) matrix elements [Eq. (5)].
Accordingly, at a fixed value of T , the shape function is a
smoothly varying function of the final-state energy Etotal as
well as of the photon energy h̄ω. This is the reason underlying
the notion of the “virtual sequential ionization” appearing in
the vicinity but below the SDI threshold [15,16]. The only
remaining manifestation of the SDI threshold in Eqs. (4) and
(5) is the vanishing argument �Eni = 0, �Ef n = 0 in the
complex exponential functions when h̄ω reaches the ionization
potential of the ionic ground state, i.e., the intermediate
ionic ground state becomes on-shell. As h̄ω approaches
this value from below, P DI(�E) smoothly increases as
�E → ±(I2 − I1) and the energy mismatches �Ef n → 0
and �Eni → 0 decrease. The only apparent discontinuity
between the nonsequential and sequential regimes appears in
the limit T → ∞ as the contribution of the shape function
around the on-shell transition scales as ∼ T 2, while all off-shell
intermediate contributions for h̄ω both below and above the
SDI threshold scale linearly with T as T → ∞. The width
of the region around �Ef n = �Eni = 0 exhibiting quadratic
scaling is proportional to 1/T . In the nonsequential regime,
only parts of the shape function with �Ef n,�Eni �= 0 are
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accessible. The total yield P DI = ∫
P DI(�E)d�E thus scales

linearly with T for long enough pulses (cf. [22]).
Conventionally, one defines a generalized two-photon

double-ionization cross section as

σ(2) = lim
T →∞

ω2

I 2
0 Teff,2

P DI, (11)

with Teff,2 = 35T/128 for sin2 pulses and a two-photon
transition. Equation (11) assumes that P DI is approximately
constant over the spectral bandwidth of the pulse. At the SDI
threshold, the asymptotic scaling of P DI switches from ∼T

to ∼T 2 and P DI thus depends strongly on the (mean) photon
energy. The pulse should then be long enough to possess a
sufficiently small spectral bandwidth to uncover the correct
asymptotic scaling. By the same token, however, the variation
of P DI as a function of h̄ω close to the threshold becomes
more pronounced as the pulse duration becomes longer and
the approach to the underlying divergence of P DI(�E) for
�E → ±(I2 − I1) is increasingly uncovered. Therefore, the
hallmark of the SDI threshold is a pronounced rise of P DI and,
in turn, of σ(2).

An alternative way of extracting cross sections from a
time-dependent calculation has recently been used by Palacios,
Rescigno, and McCurdy [12]. While it removes the uncertainty
in the total energy of the pulse, the energy resolution in the
intermediate state is still determined by the pulse duration.
Close to threshold long pulses are thus still needed for accurate
extraction of the cross section. In addition, it requires very
precise energy resolution in P DI(E1,E2). For simplicity, we
use Eq. (11) in the following.

The total cross section for nonsequential TPDI strongly
increases just below the SDI threshold, as anticipated above
and observed in a number of recent studies [12,15,16,31,36].
This increase is a direct manifestation of the continuity
across the threshold and can be qualitatively explained as
follows: because of the time-energy uncertainty, the system
can transiently “borrow” the energy that is missing for the
sequential pathway to be accessible, if the intermediate state
(i.e., the state after one-photon absorption) is only transiently
occupied. In other words, while the final DI state is on-shell,
the intermediate ionic state is off-shell but only barely so.
The occupation time of the intermediate state scales with the
inverse of the borrowed energy. For photon energies close
to the SDI threshold, the system has to borrow only very
little energy. In turn, the possible occupation time of the
intermediate state corresponding to the sequential process
increases leading to a large total yield. This process has
previously been called “virtual sequential” TPDI [15,16].
Eventually, when the SDI threshold is crossed, both transitions
can be on-shell and the intermediate state for the sequential
process can be occupied for an infinitely long time.

In Fig. 8, we show the total nonsequential TPDI cross
section [Eq. (11)], as extracted from pulses with a sin2 envelope
and durations T from 0.5 fs (comparable to the frequently
used 10 cycle pulses in literature) up to 10 fs (corresponding
to a total pulse duration of 20 fs). At selected data points,
we plot the spectral distribution of the laser pulses that
were used to extract the cross-section values. Obviously, the
frequency dependence of σ(2) near the SDI threshold can only
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FIG. 8. (Color online) Total TPDI cross section obtained using
sin2 pulses with different durations T . Spectral distributions of the
pulse are displayed for one data point for each T , showing the
area over which the cross section obtained is effectively integrated.
The intensity is 1012 W/cm2 for all pulses. Angular momenta up
to Lmax = 3 for the total angular momentum and l1,max = l2,max = 7
for the single angular momenta are included. The radial boxes had
extensions up to rmax = 1400 a.u. for the 10 fs pulses.

be mapped out when the spectral width does not overlap with
the above-threshold region. Even for low photon energies the
cross section is “blurred” when too short pulses are used. This
leads to a wrong slope of the cross section, as can be seen
by comparing the results for T = 0.5 fs with longer pulses.
Figure 8 also demonstrates unambiguously that the rise of
the cross section close to the sequential threshold does not
result from an unintended inclusion of sequential contributions
to the total double-ionization yield. The spectral bandwidth
of the 10 fs pulse is small enough (≈0.3 eV FWHM) that
virtually no contributions from the on-shell sequential process
are present, even at a central photon energy of 54 eV. The
spectral contribution |F(ω)|2 with h̄ω > I2 is only 0.026% of
the entire spectral content of the 10 fs pulse at 54 eV (2.39%
for the 5.5 fs pulse). From the value of P DI just above I2 and
the residual weight |F(ω)|2, the contribution to σ(2) at 54 eV
can be estimated to be less than 0.42%.

We can also rule out any contribution from the three-
photon sequential process, since we only take partial waves
with L = 0 and 2 into account when calculating σ(2). To
verify that excitation of highly excited ionic states is not
wrongly interpreted as double ionization, we also checked
the population in these states (which are occupied through
two-photon single ionization). For the longest pulse used here
(10 fs) and at a central frequency of h̄ω = 53.5 eV, ions
in the n = 1 state after single ionization can be resonantly
excited into n = 7 and 8 by the second photon, whereas the
population of higher n states is strongly suppressed. We have
checked on the stability of both the ionic Rydberg population
as well as the double continuum population as a function of
propagation time after conclusion of the pulse and prior to
projection for up to 3 fs. The temporal stability indicates that
an unintended inclusion of high-lying Rydberg states in the
calculated double-ionization probability can be ruled out.
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We therefore conclude that the rise of the generalized two-
photon cross section as the SDI threshold is approached is a
physical consequence of the continuity across the threshold
and signature of the onset of the “virtual” SDI process.

VII. SUMMARY

We have discussed consequences of the continuity across
the threshold from nonsequential double ionization (NSDI)
to sequential double ionization (SDI) at h̄ω = I2. We have
shown that the energy difference �E between the two outgoing
electrons provides a suitable variable to display the common
features of the NSDI and SDI processes on an energy- and
angle-differential level.

In particular, the singly differential energy distribution as
a function of the energy difference between the electrons,
P DI(�E), agrees excellently over a wide range of energy
sharing, irrespective of the photon energy. The shape of the
energy distribution can be understood by a simple model based
on second-order time-dependent perturbation theory.

We have also presented fully converged anisotropy parame-
ters for TPDI over a wide range of photon energies (42–80 eV)
and of pulse durations (150–10000 as). An approximately
conserved nodal line at 90◦ relative to the polarization axis,
which remains undistorted by final-state electron-electron
interaction, points to the fact that the ionization process is
dominated by the absorption of one photon by each electron.
Deviations from this emission pattern could only be observed
in regions where one of the electrons is so slow that its direction
can be easily changed, i.e., for very unequal energy sharing

outside the main sequential peaks, or for low photon energies
only slightly above the threshold for TPDI. A second notable
exception is the region of dynamical Fano resonances, where
additional intermediate pathways via excited ionic states open
that can have nonzero angular momentum. In such cases, the
angular distribution does not even approximately resemble a
Hertz-dipole shape.

Additionally, we have shown that a further consequence
of the continuity across the threshold is a sharp rise of the
energy- and angle-integrated “generalized” cross section just
below the threshold, which can be viewed as the onset of
the “virtual” sequential ionization channel consistent with the
smooth approach to the on-shell intermediate state.
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