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Time shifts in photoemission from a fully correlated two-electron model system
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We theoretically investigate time-resolved photoemission originating from two different shells (1s and 2p) of a
fully correlated atomic two-electron model system ionized by an extreme-ultraviolet attosecond light pulse. The
parameters of the model system are tuned such that the ionization potentials of the 1s and 2p electrons have values
close to those of the 2s and 2p levels in a neon atom, for which a relative time delay has been measured in a recent
attosecond streaking experiment by Schultze et al. [Science 328, 1658 (2010)]. Up to now theoretical efforts
could account only for delays more than a factor of 2 shorter than the reported experimental value. By solving the
time-dependent Schrödinger equation numerically exactly we explore the influence of correlations on the time
delay previously implicated as one of the potential sources of discrepancies. We investigate the influence of the
interplay between electron interactions and the probing streaking infrared field on the extracted relative delays
between the two emission channels. We find that for our model system the inclusion of electronic correlation only
slightly modifies the time shifts, as compared to a mean-field treatment. In particular, the correlation-induced
time delay is contained in the Eisenbud-Wigner-Smith time delay for the photoionization process.
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I. INTRODUCTION

Attosecond streaking is one of the most fundamental
processes in attosecond science [1–7], and an attosecond streak
camera [8] allows for an accurate characterization of isolated
attosecond extreme-ultraviolet (XUV) pulses, as well as the
clocking of ultrafast electronic dynamics in atoms, molecules,
and solids. The basic idea of attosecond streaking is that
electrons which are emitted in the presence of an infrared
(IR) laser field are accelerated to different final momenta,
depending on their release time. Thus, temporal information
is mapped to the energy domain. Pioneering experiments
include the direct measurement of light waves [9], temporal
measurements of the decay time of Auger processes in krypton
[10], and transport of electrons in tungsten surfaces [11].

In a recent paper, the measurement of a time delay of
21 ± 5 as between the photoemission of neon 2s or 2p

electrons was reported by Schultze et al. [1]. This work
triggered considerable interest [12–19] since a significant
fraction of the observed delay could not be explained by state-
of-the-art quantum-mechanical calculations [1]. Meanwhile,
delays in photoionization have also been measured for the
emission of argon 3s and 3p electrons using a complementary,
interferometric technique [20].

Schultze et al. employed several theoretical approaches to
account for the observed time shifts in Ne: the time-dependent
Schrödinger equation (TDSE) in the single-active-electron
(SAE) approximation using a model potential for Ne yielded
group delays of the XUV wave packets corresponding to
ionization from the 2s and 2p shell (without an IR field) of
4.5 as after spectral averaging. A similar value was obtained by
simulating the streaking experiment, including both the IR and
the XUV pulses, using the Coulomb-Volkov approximation
(CVA) and extracting the time shifts from the resulting
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streaking spectrograms (cf. [15]). Use of the TDSE instead
of the CVA gave a slightly higher time shift of 6.8 as. Many-
electron models which partially include the effect of electron
correlation on the time shifts were employed to analyze the
dipole transition matrix elements for photoionization by the
XUV pulse. The multiconfigurational Hartree-Fock method
(MCHF) yielded a time shift of 4.0 as. The state-specific
expansion approach (SSEA) [21], which better accounts for
electronic correlation by including interchannel couplings,
gave a slightly larger delay of 6.4 as. Subsequently Kheifets
and Ivanov [12] analyzed the dipole matrix elements using the
(independent-electron) Hartree-Fock (HF) approximation and
found a time shift of 6.2 as. An improved calculation using
the random-phase approximation with exchange (RPAE) gave
8.4 as.

All theoretical approaches up to now fail to quantitatively
account for the observed experimental delay. Very recently
Ivanov and Smirnova [19] suggested that the discrepancies
between experiment and theory could be resolved by doubling
the theoretical delays obtained in [12] (and hence also in [1])
to account for modifications of the time shifts by the streaking
field. We show in this paper that such a procedure is not valid
for the present one- and two-active-electron models.

A complete and conclusive theoretical ab initio treatment
of the XUV photoionization process in the presence of the
streaking field would require a converged numerical solution
of the TDSE for a neon atom exposed to the attosecond
XUV pulse and the IR streaking field. Clearly, the complexity
of the corresponding ten-electron wave function precludes
a fully correlated time-dependent treatment without severe
approximations.

In this contribution we will focus on a model two-electron
system for which the TDSE can be solved numerically
exactly with the help of supercomputers. The model potentials
VN−2(ri), representing the interaction with the core consisting
of the nucleus and N − 2 electrons, are chosen such that the
lowest two states of opposite parity, in the following referred
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to as 1s and 2p, have binding energies close to those of the
neon 2s and 2p subshells. The corresponding nonrelativistic
Hamilton operator of such a system reads in atomic units

H0 = �p2
1

2
+ VN−2(r1) + �p2

2

2
+ VN−2(r2) + 1

|�r1 − �r2| , (1)

where �ri and �pi are the canonical coordinates of the ith electron
which is subject to the radial-symmetric potential VN−2(ri)
representing the mean field generated by the remaining N − 2
electrons (N = 10 for neon). The mutual electronic repulsion
is mediated by the two-body Coulomb interaction operator

1
|�r1−�r2| . We refer to this model Hamiltonian as the two-active-
electron (TAE) approximation.

Unlike the authors of previous works [1,12], we do not
aim for an accurate description of the electronic structure
of neon. Rather, we want to investigate whether electronic
correlation, if treated exactly in a fully ab initio fashion, gives
rise to time delays substantially different from those found in a
mean-field treatment. Furthermore, simulating a prototypical
streaking experiment allows us to determine whether the
interplay between correlations and the IR field noticeably
affects the observable relative time shifts. Atomic units will be
used throughout the text unless indicated otherwise.

II. SINGLE-ACTIVE-ELECTRON APPROACH FOR NEON

We first briefly review the SAE, or mean-field, treatment of
the time delay in photoemission as observed in an attosecond
streaking setup. To simulate the interaction of the ionizing
XUV pulse and the IR streaking field with an atom (e.g., neon)
in the SAE approximation, we solve the three-dimensional
TDSE

i
∂

∂t
�(�r,t)

=
[
−

�∇2

2
+ VN−1(r) + �r · [ �FXUV(t) + �FIR(t)]

]
�(�r,t) ,

(2)

where �FXUV(t) is the (linearly polarized) electric field of
the attosecond pump pulse, �FIR(t) is the (linearly polarized)
electric field of the few-cycle IR probe pulse, and VN−1(r) is
a model potential obtained from self-interaction-free density-
functional theory [22] representing the mean field generated by
the remaining N − 1 electrons. The electric fields are related
to the corresponding vector potentials by �F (t) = − ∂

∂t
�A(t).

The computational method is based on the well-established
pseudospectral split-operator technique as described in [23].
The temporal propagation is carried out using a split-operator
algorithm where the evolution under the influence of the field-
free Hamiltonian is performed in the energy representation of
the wave function and the evolution driven by the external field
is calculated in the length gauge on a grid in coordinate space.

Extraction of time shifts by streaking originally was
inspired by the strong-field approximation (SFA), which estab-
lishes a simple, approximate relation between the unperturbed
asymptotic momentum of the photoelectron �p0 and the final

momentum �pf (τ ) for emission at time τ in the presence of an
IR field,

�pf (τ ) = �p0 − �AIR(τ ) . (3)

After independently simulating the streaking protocol for the
2s and 2p0 initial states, we thus extract the absolute time shifts
by fitting the first moments of the final momentum distribution
�pf (τ ) to the modified momentum �p0 − α �AIR(t + tS), where α

is a correction factor for the amplitude of the momentum shift
induced by the streaking field, and the sign convention for tS
ensures that positive (negative) values correspond to delayed
(advanced) emission relative to the center of the XUV pulse.
The 2p1 and 2p−1 initial states can be neglected since they do
not contribute significantly to the photoelectron emission in
the direction of the laser polarization axis.

We investigated the absolute time shifts tS for different
XUV energies in the range from 40 to 140 eV which are
plotted in Fig. 1 as a function of the final electron energy.
For an XUV energy of 106 eV (as in the neon experiment), we
obtain a relative streaking delay of �tS = t

2p

S − t2s
S ≈ 6.9 as

between emission from 2s and 2p. This agrees well with the
TDSE value of 6.8 as reported in [1], which was obtained from
another model potential for Ne and with a different numerical
algorithm. However, as has been shown recently [13,14,19],
the simultaneous interaction of the outgoing electron with the
streaking IR field and the Coulomb potential (“Coulomb-laser
coupling” cf. [24,25]) leads to an apparent streaking time (or
phase) shift that does not originate from the timing of the
XUV ionization process but can be explained classically from
the combined influence of the streaking and Coulomb fields on
the outgoing electron trajectory [13], or by use of the eikonal
approximation [14]. This goes clearly beyond the SFA, which
by construction does not include any Coulomb-laser coupling
(CLC) effects. The magnitude of the apparent continuum CLC
time shift tCLC for neon can be accurately extracted from the
Coulombic hydrogen 1s streaking delays tH

S for the same field
parameters. This procedure is justified since exit-channel CLC
for continuum electrons emitted from neon has its origin in the
long-ranged, asymptotic 1/r , hydrogenic Coulomb potential.

However, the streaking time shifts tH
S , which are in very

good approximation equivalent to the delays obtained from
corresponding classical simulations [13], do not stem from
Coulomb-laser coupling alone but also contain information on
the spectral phase, i.e., the group delay or Eisenbud-Wigner-
Smith (EWS) delay tEWS [26–28], of the XUV wave packet
[29]. Thus, we split the total streaking time shifts into two
contributions,

tS ≈ tEWS + tCLC, (4)

where tEWS for a pure Coulomb potential has its origin in the
energy dependence of the Coulomb phase σ� = arg 	(� + 1 −
iZ/

√
2E) which depends on the angular momentum � and

with Z = 1 for a singly ionized atom. For the present case the
Coulomb correction thus yields

tCLC ≈ tH
S − d

dE
σ1. (5)

The correction term tCLC (red solid line in Fig. 1) de-
creases with increasing energy of the outgoing electron E
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approximately as ∼−E−3/2 [13,30]. The EWS time delays
tEWS can be related to the dipole transition matrix elements
between the initial state ψi and final state ψf ,

tEWS = d

dE
arg[〈ψf (E,θ =0)|ẑ|ψi〉], (6)

which are evaluated in forward direction θ = 0◦ (as are the
streaking spectrograms). For the simplest case of an initial
s state resulting in a pure p continuum, the expression in
Eq. (6) reduces to the (partial-wave) time delay d

dE
(δ1 + σ1),

where δ� is the elastic-scattering phase shift due to the short-
ranged contributions (which fall off faster than r−1) to the
radial potential VN−1(r). Note that the additional centrifugal
contribution to the EWS delay due to the energy dependence
of σ� is specific to Coulomb potentials. The corresponding
(regular) asymptotic continuum partial-wave solutions for Z =
1 are proportional to sin

(
kr + ln 2kr

k
− �π

2 + σ� + δ�

)
with k =√

2E. For an initial p state both the s and d continua in Eq. (6)
add up coherently.

The relative CLC correction for the present final electron
energies for ionization of Ne 2s and 2p states by a 106 eV
XUV pulse in the SAE approximation gives �tCLC ≈ 2.8 as.
The remaining relative delay of �tS − �tCLC ≈ 4.1 as follows
from the differences in the spectral phases of the 2s and 2p

wave packets, i.e., the relative EWS time delay.
If we add the EWS time delays tEWS, independently

determined from the dipole matrix element in Eq. (6), to
the CLC delays tCLC (red solid line in Fig. 1), the resulting
curves for tEWS + tCLC as functions of the final electron energy
(green and blue dashed lines) coincide with the simulated
streaking shifts tS (open squares and circles, respectively). This
near perfect agreement demonstrates that, on the one-electron
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FIG. 1. (Color online) Streaking time shifts tS extracted from
quantum-mechanical simulations for 2s (green squares) and 2p0

(blue circles) initial states of a Ne one-electron model potential
(see text). The results are obtained from spectrograms taken in the
forward direction with respect to the laser polarization axis. Using an
opening angle of 10◦ instead has almost no influence on the obtained
delays. The dashed green (and blue) lines show the results of adding
the corresponding Eisenbud-Wigner-Smith time delays tEWS for 2s

(and 2p0) to the Coulomb-laser coupling time shifts tCLC (red solid
line) which almost perfectly equal the streaking delays (squares and
circles). The streaking results for H(1s) (gray dotted line) are shown
for comparison.

level, streaking time shifts can be well accounted for by
adding up the EWS-like shifts and the independent CLC
contributions, tS ≈ tEWS + tCLC. Consequently, no additional
measurement-induced time shifts due to the combined effect
of the laser field and the short-ranged parts of the potential
VN−1(r) are observed. In particular, doubling the value of the
short-ranged EWS delays, as suggested in [19], would destroy
the very good agreement between tS and tCLC + tEWS.

The physical origin of the different EWS time shifts
lies in the short-ranged contributions of the model potential
VN−1(r), which approximately account for the many-electron
effects in the SAE treatment, and in the differences in the
centrifugal potential that the outgoing electrons encounter;
cf. [29]. One extension is worth noting: polarization of the
initial state [16,29] by the streaking field can, in principle,
give additional contributions to Eq. (4) (cf. [12]). In the present
case, the initial state has a small polarizability and entrance
channel distortions can be safely ignored. This was verified
by performing constrained TDSE calculations (“restricted
ionization model” [31,32]) in which the initial-state interaction
with the IR field is suppressed but continuum states fully evolve
under the influence of the IR field. As expected, the obtained
streaking delays (not shown) are in excellent agreement with
the full TDSE results shown in Fig. 1.

Since the short-ranged part of the model potential VN−1(r),
reflects, on the mean-field level, many-electron effects, tEWS

approximates the time delay caused by the mean field. The
question to what extent the approximation holds for a true
two-electron (or more generally, many-electron) process will
be addressed below.

III. TWO-ACTIVE-ELECTRON APPROXIMATION

The parameters of our two-electron model system are
chosen such that, to some degree, it mimics a neon atom: as an
initial state we use the fully correlated 1s2p 1P o eigenfunction
of our model Hamiltonian [Eq. (1)], so that the initial state of
the emitted electron will have either s or p angular momentum
character. With this choice the photoemission will occur from
two energetically well-separated levels accessing the same
partial-wave sectors as for neon. We tailor the model potential
such that the ionization potentials of the s and p electrons take
approximately the same values as for the 2s and 2p levels in
Ne. In addition, the 1s2p initial state has to be sufficiently
isolated in energy so that the IR field cannot noticeably couple
to neighboring states of the model system, which would lead
to unwanted modifications of the streaking process. Along
the same lines, the initial state and the remaining ionic states
should have a low polarizability in order to avoid entrance- or
exit-channel distortions. One simple (but, clearly, not unique)
realization of these constraints is provided by the model
potential

VN−2(r) = − Z̃

r
+ V0e

−(r−r0)2/d2
, (7)

consisting of a pure Coulomb potential with a superimposed,
short-ranged Gaussian contribution. The choice of Z̃ = 2
ensures that in the case of single ionization the outgoing
electron is asymptotically exposed to a long-ranged Coulombic
tail which decays as 1/r . The short-ranged potential mimics

033401-3



S. NAGELE, R. PAZOUREK, J. FEIST, AND J. BURGDÖRFER PHYSICAL REVIEW A 85, 033401 (2012)
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FIG. 2. (Color online) Radial potential VN−2(r) [Eq. (7)] for the
two-active-electron model (red solid line), and reduced mean-field
potentials V

2p

N−1(r) (blue dashed line) and V 1s
N−1(r) (green dotted line),

derived from the charge distributions of a 1s or 2p electron, entering
the SAE analysis.

the mean field of the remaining N − 2 electrons (N � 3) of a
many-electron atom. In our simulations we use the parameter
set V0 = −1.6 a.u., r0 = 1.8 a.u., and d = 0.72 a.u. (Fig. 2).
This choice results in an ionization potential of the TAE
system of I2p = 23.1 eV for the 2p electron (as compared
to 21.6 eV for neon) and I1s = 49.8 eV for the 1s electron
(as compared to 48.5 eV for 2s of neon). The residual shift
in the ionization potentials of about 1.5 eV for both states
can be easily compensated for by slightly increasing the XUV
energy to achieve the same final electron energies as in the
experiment.

In our computational approach (see, e.g., [33,34] for a
detailed description) we numerically solve the TDSE for the
TAE system. To that end we expand the six-dimensional
wave function �(�r1,�r2) in coupled spherical harmonics
YLM

l1,l2
(�1,�2),

�(�r1,�r2,t) =
∞∑

L,M

∞∑
l1,l2

RLM
l1,l2

(r1,r2,t)

r1r2
YLM

l1,l2
(�1,�2), (8)

which results in a set of coupled partial differential equations
in r1 and r2 (“time-dependent close-coupling” [35–37]). The
radial degrees of freedom are treated using a finite-element
discrete-variable representation (FEDVR) [38–40], which
leads to block-diagonal kinetic matrices and allows for an effi-
cient parallelization. We employ an explicit temporal propaga-
tion using the short-iterative Lanczos (SIL) algorithm [41,42]
with automatic time stepping and error control. The 1s2p

initial state is obtained by solving the stationary Schrödinger
equation, i.e., by directly diagonalizing the full two-electron
Hamiltonian, using the Arnoldi package (ARPACK) [43] which
implements the implicitly restarted Arnoldi method.

Since we study only single ionization where one elec-
tron remains bound to the nucleus, we use an asymmetric
(L-shaped) radial grid where only one of the two radial
coordinates becomes “asymptotically” large. The same idea
can be exploited in the angular partial-wave expansion since
only the continuum electron, subject to the IR-field-induced
quiver motion, will reach high angular momenta. Note that

exchange symmetry remains fully preserved when this asym-
metric decomposition of coordinate space is applied. In order
to keep the outgoing electron in the computational box, we
use a radial grid extending to 816 a.u., whereas the radial
coordinate of the second electron is restricted to 96 a.u., large
enough to accommodate the excited ionic states up to n = 8.
Doubly ionized parts of the wave function are absorbed by
a complex absorbing potential at the box boundaries. Each
FEDVR element spans a length of 4.0 a.u. and contains a DVR
of order 11. The partial-wave expansion covers total angular
momenta up to L = 8 and one-electron angular momenta up
to l< = 5 for the inner and l> = 8 for the outer electron. The
external fields are linearly polarized and treated in dipole
approximation. Thus, we can restrict ourselves to partial
waves with total magnetic quantum number M = 0 due to
the cylindrical symmetry of the system. Our simulations are
checked for convergence with respect to the size of the angular
and radial bases.

IV. RESULTS AND DISCUSSION

In Fig. 3 we show the resulting streaking spectrograms
for photoionization of the 1s2p neonlike initial state taken
in the forward direction with respect to the laser polarization
axis. The XUV pulse has a central photon energy of 107.5 eV
and a duration of 200 as (FWHM of the Gaussian intensity
envelope). The XUV intensity was chosen to be 1013 W/cm2

which is, presumably, higher than in the experiment but still
well in the perturbative, one-photon regime. The 800 nm IR
streaking field has a duration of 3 fs (FWHM of the cos2

envelope) and an intensity of 4 × 1011 W/cm2. As has been
shown previously [13], the intensity of the streaking IR field
does not noticeably affect the streaking time shifts. In addition,
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FIG. 3. (Color online) Streaking spectrogram for a 1s2p initial
state of the model system ionized by an XUV pulse with a photon
energy of 107.5 eV and duration of 200 as [full width at half
maximum (FWHM) of the Gaussian intensity envelope]. The figure
shows the final momentum distribution in the forward direction with
respect to the laser polarization axis as a function of the delay
time τ between the IR and the XUV pulses. The streaking field
has a wavelength of 800 nm, a duration of 3 fs, and an intensity of
4 × 1011 W/cm2. The solid white lines are the first moments of the
electron spectra.
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final channels (blue squares), and a 1s electron, (2p,Ep) final
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calculations where one of the two electrons was kept frozen (see text).
The SAE as well as the TAE results are obtained from spectrograms
taken in the forward direction with respect to the laser polarization
axis. Use of an opening angle of 10◦ instead has almost no influence on
the obtained delays. For comparison we also show the Coulomb-laser
coupling time shifts tCLC (red solid line).

we verified their insensitivity to the XUV peak intensity in the
range between 1012 and 1015 W/cm2.

By fitting the first moment of the two emission channels in
the momentum spectrograms Fig. 3 to the analytic form of the
IR vector potential, we obtain a relative time shift of �tS ≈
4.3 as (see Fig. 4). As in the Ne experiment the emission of
the asymptotically faster p electron appears to be delayed with
respect to the slower s electron. However, quantitatively, the
extracted delay is still well below the experimental value and
on the same level as the previously reported theoretical results
for Ne. For the present final energies of 83.9 and 57.5 eV,
the expected offset due to the hydrogenic CLC is about
�tCLC ≈ 3.5 as (see the red line in Fig. 4). The remaining
relative time shift of only �tS − �tCLC ≈ 0.8 as agrees well
with the relative EWS time delay of �tEWS ≈ 0.9 as obtained
from the group delay of the XUV wave packet (evaluated in the
forward direction and averaged over the wave packet’s spectral
width). Note that the accuracy of this decomposition [Eq. (4)]
also persists on the level of absolute time shifts (see Table
I). Schultze et al. have carried out another set of streaking
measurements with XUV pulses of higher energy and longer
duration [1]. In analogy, we also repeated the TAE simulations
for a second XUV pulse with a photon energy of 122 eV and
a duration of 400 as (FWHM), very close to the experimental
parameters. While for the lower photon energy the relative
time shifts are dominated by the CLC term, for the higher
photon energy the EWS time delay becomes more important
(see Table I). The decomposition into the contributions from
CLC and the EWS delay [Eq. (4)] holds for both energies.

It is now instructive to perform a reduced SAE analysis
for the same model system for which the TAE description

TABLE I. Absolute streaking time shifts tS, Coulomb-laser
coupling corrections tCLC, and Eisenbud-Wigner-Smith delays tEWS

for the two-active-electron simulations and the corresponding reduced
mean-field single-active-electron analysis for two different XUV
pulses. The sum tCLC + tEWS agrees very well with the streaking delays
tS according to Eq. (4). All numbers are given in attoseconds.

tCLC tEWS tCLC + tEWS tS

107 eV XUV pulse
TAE model (1s) −9.5 −3.2 −12.7 −12.6
SAE model (1s) −9.5 −2.8 −12.3 −12.3
TAE model (2p) −6.0 −2.3 −8.3 −8.3
SAE model (2p) −6.0 −2.9 −8.9 −8.7

122 eV XUV pulse
TAE model (1s) −7.2 −2.6 −9.8 −9.7
SAE model (1s) −7.2 −2.3 −9.5 −9.4
TAE model (2p) −4.8 0.8 −4.0 −4.3
SAE model (2p) −4.8 −2.0 −6.8 −6.8

is possible. To this end we construct the corresponding
mean-field potentials V 1s

N−1(r) and V
2p

N−1(r) from the fully
correlated 1s2p wave function �1s2p(�r1,�r2). We can exploit
the fact that the corresponding partial-wave expansion (8)
is largely dominated (>99% of the initial norm) by the
two terms RL=1M=0

l1=0,l2=1(r1,r2) = RL=1M=0
l1=1,l2=0(r2,r1). Tracing out one

coordinate then gives the screening charge distributions of the
frozen 1s electron,

|�1s(r1)|2 = 2
∫ ∣∣∣∣∣R

L=1M=0
l1=0,l2=1(r1,r2)

r1r2

∣∣∣∣∣
2

r2
2 dr2

∣∣Y 0
0 (�1)

∣∣2
, (9)

which is radially symmetric, and the angle-dependent charge
distributions of the frozen 2p electron

|�2p(�r2)|2 = 2
∫ ∣∣∣∣∣R

L=1M=0
l1=0,l2=1(r1,r2)

r1r2

∣∣∣∣∣
2

r2
1 dr1

∣∣Y 1
0 (�2)

∣∣2
, (10)

where Y �
m(�) are the spherical harmonics. In the present

case, the resulting orbitals are essentially equivalent to singly
occupied natural orbitals constructed from a decomposition of
�1s2p(�r1,�r2) [44]. The mean-field Hartree potentials can then
be obtained from

V
1s,2p

N−1 (�r) = VN−2(r) +
∫

d3�r ′ |�1s,2p(�r ′)|2
|�r − �r ′| . (11)

In the present case, the resulting anisotropy for the V
2p

N−1(�r)
potential is small and can be neglected, which facilitates the
computational treatment. This procedure results in mean-field
ionization potentials I2p = 24.2 eV for the 2p and I1s =
51.9 eV for the 1s electron, which are very close to the values
obtained from the full two-electron initial state. Repeating
the streaking simulation with the same field parameters as
in the TAE case (but with slightly higher XUV energies to
compensate for the differences in the ionization potentials),
we find a relative time delay �tS ≈ 3.6 as for the lower photon
energy. Subtraction of the CLC delay according to Eq. (4) gives
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very good agreement with the corresponding relative EWS
time delay extracted from the one-electron mean-field dipole
matrix elements Eq. (6). As for the TAE case, Eq. (4) also holds
true on the sub-1-as level for the absolute time shifts (Table I).
For the lower photon energy, comparison with the two-active-
electron calculation (see Fig. 4 or Table I) shows that there are
no significant time shifts due to two-electron correlation effects
beyond the effective mean-field level. For the more energetic
and longer XUV pulse, the discrepancy between the SAE
and the fully correlated TAE results is somewhat larger. This
pertains mainly to the highly energetic 2p electron, the EWS
time shift of which is more strongly influenced by electronic
correlations that cannot be incorporated by a simple (Hartree)
mean-field treatment. Note that this discrepancy already exists
on the level of the EWS time shifts and is not affected by the
streaking field (see Table I). Thus, in the SAE as well as in
the TAE approximation, Eq. (4) is fulfilled on the sub-1-as
level for the absolute and relative time shifts. In particular, the
remarkably good agreement of the streaking delays with the
CLC-corrected EWS delays shows that the interplay between
electron-electron interactions and the IR field does not affect
the observable time shifts. This also holds true for the case
where correlation has a noticeable effect on the EWS delay.

In conclusion, we have evaluated streaking time shifts on
the independent-electron level using a single-active-electron
or mean-field model potential for Ne as well as for a fully
correlated two-active-electron model system mimicking, to
some extent, a neon atom. The streaking time delays from the
SAE simulations using a Ne model potential agree well with
results of previous studies, which are considerably lower than
the experimental value. We show that in all cases the time delay
is given by the sum of the EWS and CLC contributions Eq. (4).
Thus, the Eisenbud-Wigner-Smith delay, which stems from
the XUV transition matrix elements alone, can be obtained
from the streaking spectrograms, if the apparent time shifts
from Coulomb-laser coupling in the exit channel are accounted
for.

The two-electron model allows one to study the photoemis-
sion of two interacting correlated electrons from two distinct
shells with energy levels similar to those in the Ne atom,
even though the mean-field potential representing the remain-

ing electrons does not accurately represent the electronic
structure of neon. Also, in the TAE model simulations with
pulse parameters as in the experiment, we found very good
agreement between the CLC-corrected EWS delays and the
streaking time shifts. We can thus infer that the laser field does
not strongly affect the electronic interaction and the related
time shifts, during photoemission. Comparison with SAE
calculations, where one electron is kept frozen, demonstrates
that this holds true even when correlation becomes important
in the photoemission process, i.e., when the EWS delays from
the SAE and TAE models differ. We found that also in a
time-dependent, fully correlated treatment electronic intershell
interaction per se does not induce large enough time shifts to
match the experimental value. In the present case, relative
time shifts are dominated by the one-electron exit-channel
Coulomb-laser coupling contributions. This latter observation
may, however, be specific to the present model system, which
focuses on intershell correlations. Furthermore, no additional
measurement-induced time shifts due to the interaction of
the probing IR streaking field with the short-ranged parts
of the model potentials could be identified. The explanation of
the experimentally observed time delay between photoemis-
sion of the 2p and 2s states in neon remains an open problem.

Note added. Very recently we became aware of the
publication of work by Moore et al. [45], who performed
many-electron time-dependent studies using the R-matrix
incorporating time method. They simulated a streaking setup
for the ionization of neon by a 105.2 eV XUV pulse and
obtained a time delay of 10.2 ± 1.3 as between emission from
the 2s and 2p orbitals.
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