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A theory for ground-state modifications of matter embedded in a Fabry-Perot cavity and whose
excitations are described as harmonic oscillators is presented. Based on Lifshitz’s theory for vacuum energy
and employing a Lorentz model for the material permittivity, a nonperturbative macroscopic QED model
that accounts for the infinite number of cavity modes with a continuum of their wave vectors was built.
Differences from the commonly used single-mode Hopfield Hamiltonian are revealed. The nonresonant
role of polaritons in the ground-state energy shift is also demonstrated, showing that the cavity effect is
mainly caused by static screening occurring at very low frequencies. The theory allows for a
straightforward incorporation of losses and temperature effects.
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Introduction—Vacuum-induced modifications of
molecular properties in a “dark” cavity have recently
attracted considerable attention [1]. It is claimed that strong
coupling (SC) of electromagnetic (EM) modes to material
excitations can modify a range of material properties,
including chemical reaction rates [2–6], dielectric constants
[7], work functions [8], phase transitions [9,10], ferromag-
netism [11], and (super)conductivity [12–18]. It has long
been suggested that ultrastrong coupling (USC) of matter to
individual cavity modes can modify the system’s ground
state [19–21]. Vibropolaritonic chemistry is typically real-
ized in Fabry-Perot (FP) cavities by the effect of collective
strong coupling with a very large number of molecules and
without external driving, i.e., at thermodynamic equilib-
rium, suggesting that USC effects could be responsible.
However, available theoretical approaches do not explain
the observed changes under these conditions [22–24].
There is thus a clear need for a theoretical approach that
links USC to polariton chemistry and can incorporate the
experimentally relevant conditions.
A wide range of quantum optical Hamiltonian

approaches has been employed to account for ground-state
modifications in the SC and USC regimes [25–27].
However, these methods are typically restricted to a
single [19] or a few [28–30] EM modes with a fixed

wave vector, which severely limits their applicability.
Furthermore, they treat a cavity as creating new EMmodes,
instead of taking into account that it primarily rearranges
existing ones. The need to subtract the unmodified back-
ground leads us to a framework of Casimir-Lifshitz
dispersion forces [31,32], which is based on such sub-
traction and accounts for the infinite number of cavity
modes with a continuum of their wave vectors. Starting
from the full cavity Hopfield Hamiltonian we derive the
exact ground-state energy of oscillators in a cavity match-
ing it to the Casimir-Lifshitz energy with Lorentz permit-
tivity. We regularize infinite sums of polaritonic zero-
point energies (ZPEs) by using a Wick rotation to the
imaginary frequency axis and subtracting the infinite free-
space ZPE. Perturbatively, a similar approach has been
previously applied for a single oscillator in a cavity [33,34],
leading to the Casimir-Polder energy [34–36]. However,
summing up Casimir-Polder interactions for an ensemble
of molecules is significantly more challenging. By contrast,
the Lifshitz approach, which treats molecules as a
homogeneous medium described by a Lorentz dielectric
function, allows for an exact, nonperturbative, and cost-
efficient calculation providing an accurate analytical
approximation for the ground-state energy shift.
Furthermore, the theory naturally accommodates arbitrary
mirror materials, material losses, and finite-temperature
effects. A Wick rotation converts all resonant polaritonic
features into monotonic functions so that the main con-
tribution to the ground-state energy originates from small
imaginary frequencies, which contain information about
polaritons, but in a nonresonant way.
Lorentz permittivity and QED Hopfield Hamiltonian—

We first consider an infinite resonant medium homo-
geneously and isotropically filled with atoms or molecules
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having the same resonant frequencies ω0 and relaxation
rates γ. In a linear approximation, they can be treated as
harmonic oscillators, and neglecting the interaction
between them, the dielectric function of the entire medium
for light wavelengths much larger than the distance
between the oscillators can be described by the classical
Lorentz permittivity:

εðω; gÞ ¼ 1þ fω2
p

ω2
0 − ω2 − iωγ

¼ 1þ 4 g2

ω2
0 − ω2 − iωγ

; ð1Þ

where ωp and f are the collective plasma frequency of the
oscillators and the oscillator strength, respectively, and g is
a measure of the light-matter coupling.
From a quantum perspective, these Lorentz materials in

the lossless limit γ → 0 can be described using the so-called
QED Hopfield Hamiltonian [37]:

Ĥ ¼
X
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where the sum is taken over the conserved wave vector k
and two polarizations λ ¼ ðp; sÞ, while â†k;λ and b̂†k;λ are the
creation operators of the free-space photons (ωk ¼ ck) and
of the collective matter excitations with dispersionless
frequency ω0, respectively. Importantly, the light-matter
interaction strength in this minimal-coupling description is
given by g2C ¼ g2ω0=ωk, and thus is k-dependent, such that
the Lorentz permittivity is recovered when calculating the
normal modes (bulk polaritons) of the QED Hopfield
Hamiltonian [see Supplemental Material (SM) Sec. I [38] ].
Cavity polaritons—We are interested in analyzing the

ground-state energy of a system consisting of the material
described by a Lorentz permittivity embedded in an FP
cavity. We first analyze the case of FP mirrors made of a
perfect electrical conductor (PEC); see Fig. 1(a). For
calculating the normal modes of the system, i.e., cavity
polaritons, we can write a Hopfield-like Hamiltonian [19]
similar to that of Eq. (2), but instead of the unbounded light
frequency ck, there appear discrete bands of cavity modes,
ωq;n ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ ðπn=LÞ2

p
, with n denoting the out-of-plane

mode number and q being the (continuous) in-plane
momentum. In Fig. 1(b), we render the dispersion of the
cavity polaritons supported by an FP cavity for the case of
g ¼ 0.2ω0 and ω0 ¼ 2ωL, where ωL ≡ πc=L. At large
enough g, many cavity polariton branches arise, which
account for the coupling of material excitations to multiple
cavity modes.
As discussed below, a single-mode approximation to the

cavity Hopfield Hamiltonian is often utilized when dealing

with cavity polaritons. Moreover, in some cases, the
dispersion of the fundamental (n ¼ 1) mode of the cavity
is neglected (q ¼ 0). In this case, the energy levels of the
single-mode Hopfield Hamiltonian are easily written as
ωl;m ¼ ðlþ 1

2
Þωþ

1 þ ðmþ 1
2
Þω−

1 , where l and m are non-
negative integers and ω�

1 are the frequencies of the two
polaritons formed by the coupling between the fundamental
mode ωL and ω0; compare Fig. 1(c).
Ground-state energy change: Casimir-Lifshitz versus

single-mode Hopfield Hamiltonian—The ground-state
energy, i.e., ZPE of a material embedded in an FP cavity,
can be found from the full cavity Hopfield-like
Hamiltonian and expressed as the half-sum of the FP
cavity polaritons:

Uðg; LÞ ¼ 1

2

X
a;q;λ

ℏωλða; q; g; LÞ; ð3Þ

where the sum involves the discrete polaritonic state index
a (with typically two polaritons for each mode index n), the

vacuum 

(a)

(b)

(e)(c) Casimir-LifshitzSingle-mode Hopfield

(d)

n = 0
n = 1
n = 2
n = 3

FIG. 1. (a) Sketch of a resonant system consisting of identical
harmonic oscillators strongly coupled to the vacuum EM modes
in a PEC FP cavity. (b) Cavity polaritons dispersion at g ¼ 0.2ω0

for ω0 ¼ 2ωL; the empty cavity modes are shown in dashed lines.
(c) Single-mode Hopfield Hamiltonian spectrum for the cavity
polaritons at normal incidence, fixed polarization, and zero
detuning (ω0 ¼ ωL) as a function of g. (d) Real (top) and
imaginary (bottom) frequency dependence of the Lifshitz inte-
grand at T ¼ 0 in the empty cavity (gray dashed) and polaritonic
cavity (red solid). (e) Casimir-Lifshitz energy at T ¼ 0 and
ω0 ¼ ωL, normalized to the empty cavity case as a function of the
coupling energy, g.
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in-plane wave vectors q, and the polarization λ. The sum
over the conserved wave vectors q can be expressed
through an integral with the corresponding density of
states. Equation (3) already accounts for both photonic
and matter oscillators’ ZPEs, as well as their coupling term.
However, to obtain a finite value from this infinite
energy, one needs to subtract the ZPE of the uncoupled
system. Direct subtraction, Uðg; LÞ −Uð0; LÞ, may still
diverge (see SM Sec. II [38]), while Casimir-type sub-
traction of the ZPE within the same volume but using the
continuous dispersion relation obtained outside a cavity,
UCðg; LÞ ¼ Uðg; LÞ − U∞ðg; LÞ, leads to a well-defined
energy. Therefore, in order to get the cavity-induced
ground-state energy shift due to light-matter coupling,
we calculate the difference between Casimir energies as
the coupling is turned on: ΔUC ¼ UCðg; LÞ −UCð0; LÞ.
A direct calculation of the ground-state energies by

summing over the real frequencies of all cavity polaritons,
as written in Eq. (3), does not converge. The key approach
that we take to circumvent this problem was developed by
Barash and Ginzburg [46–48], which also naturally allows
for treating dissipative matter oscillators [γ > 0 in Eq. (1)]
and nonperfect mirrors. This approach establishes a fun-
damental connection between the equilibrium average
energy (ZPE at zero temperature) of a system of damped
oscillators and the dispersion relation for the eigenmodes of
that system. Barash-Ginzburg theory proves that the polari-
tonic ZPE in a cavity,UCðg; LÞ, corresponds to the standard
expression for the Lifshitz energy per unit area S (see SM
[38]), which at zero temperature is given by [48,49]

UCðg; LÞ
S

¼ ℏ
4π2

Z
∞

0

qdq
Z

∞

0

dξ
X
λ¼p;s

lnð1 − r−λ r
þ
λ e

−2kzLÞ;

ð4Þ

where kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ εðiξ; gÞξ2=c2

p
and r�λ ðq; iξ; gÞ are the

Fresnel reflection coefficients of the top and bottom mirrors
(including the substrate). Notice that, for an empty PEC
cavity (r−λ r

þ
λ ¼ 1, ε ¼ 1), Eq. (4) gives the well-known

Casimir energy UCð0; LÞ ¼ −ℏcπ2L−3=720 [50]. In
Eq. (4), the integration is performed over imaginary
frequencies ω ¼ iξ (see SM Sec. III A [38]), which,
together with the subtraction of the cavity-free limit,
eliminates the divergence of Eq. (3). Importantly, Eq. (4)
contains the Lorentz permittivity, Eq. (1), since it is derived
from Eq. (3) with cavity polaritons whose dispersion
relation is governed by this specific permittivity.
At real frequencies, the Lifshitz integrand Uω [given by

Eq. (4) evaluated after wave vector integration but before
frequency integration] behaves similarly to the local density
of photonic states in the cavity. It exhibits periodic sign
changes, has a polaritonic gap, and (for PECmirrors) grows
without limit with frequency [51]; see top panel of
Fig. 1(d). This behavior explains why a direct calculation

of UCðg; LÞ based on Eq. (3) does not converge and why
including more cavity modes within a few-mode approxi-
mation to the Hopfield Hamiltonian can change the answer
even qualitatively without necessarily improving agree-
ment with the correct result [28,52].
Wick rotation to imaginary frequencies eliminates not

only the divergence but also all resonant features, making
the integrandUξ smooth, monotonic, and rapidly decaying;
compare bottom panel of Fig. 1(d). Although it encom-
passes all of the information about the polaritons, their
visual impact compared to g ¼ 0 is barely noticeable. The
integrand decays rapidly from its maximum at ξ ¼ 0, where
for PEC at T ¼ 0 it is given by Uξ¼0 ¼ −ζð3Þ=ð8L2π2Þ,
with approximately 99% of the total energy originating
from imaginary frequencies smaller than the fundamental
cavity mode frequencyωL. The nonresonant behavior ofUξ

leads to a monotonic dependence of the Casimir-Lifshitz
energy UC on g, as shown in Fig. 1(e).
For PEC mirrors at T ¼ 0, it is feasible to obtain an

analytical approximation for the cavity-induced change of
the ground-state energy. By taking the screening factor in
the static limit, 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εðiξ ¼ 0; gÞp

, out of the integral in
Eq. (4), the relative Casimir energy change within what we
call static screening approximation (SSA) can be written as
(see SM Sec. IV [38])

ΔUC

UCð0Þ
				
stat

≈ 1 −
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

εð0; gÞp ¼ 1 −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4 g2=ω2
0

p : ð5Þ

As shown in Fig. 2(a), at T ¼ 0 the SSA reproduces the
exact Lifshitz solution extremely well for the whole range
of g=ω0, confirming the key role of the zero-frequency limit
for the ground-state energy shift. This is reminiscent of
earlier results showing that the cavity-mediated interaction
between low-energy excitations reduces to the electrostatic
limit [53–56].
As commented above, many works have employed a

single-mode Hopfield Hamiltonian to study cavity-induced
changes in ground-state energy. Within this single-mode
approximation, the energy shift can be calculated as the
difference between the polaritonic ZPE and the ZPE
of the uncoupled system [19,52]: ΔU1 ¼ ℏðωþ

1 þ ω−
1−

ω0 − ωLÞ=2. Unlike the Casimir-Lifshitz energy, the sin-
gle-mode Hopfield ZPE does not contain the free-space
subtraction and does not scale with the mirror area as no
integration over parallel wave vectors is performed.
However, when considering the relative change of the
ground state energy, a quantitative comparison between
Casimir-Lifshitz and single-mode Hopfield energy shifts
becomes possible, as the area dependence in the Casimir
energy cancels out. In the limit g ≪ ω0, the single-mode
Hopfield relative energy changes simplifies to
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ΔU1

U1ð0Þ
¼ 2g2

ðω0 þ ωLÞ2
þOðg4Þ ð6Þ

For a PEC cavity at T ¼ 0, a detailed comparison between
the results of the Lifshitz-Lorentz approach and those
obtained with the single-mode Hopfield Hamiltonian is
rendered in panels (a) and (b) of Fig. 2. For the relative
change of the ground-state energy as a function of g, at
g ≪ ω0, both curves grow quadratically but with very
different prefactors. However, already in the USC regime
(at the inflection point g ≈ 0.4ω0), the Lifshitz curve begins
to bend toward saturation at g ≫ ω0, whereas the single-
mode solution in the DSC regime shows unbounded linear
growth [Fig. 2(a)]. The Lifshitz-Lorentz approach provides
a physically meaningful saturation at the high-g limit,
where εðgÞ becomes so large that it fully screens the
Lifshitz energy, effectively suppressing any further mod-
ifications. This limit corresponds to a very large number of
oscillators, analogous to the thermodynamic limitN ≫ 1 in
microscopic analyses [57]. In this regime, the ground state
of the harmonic oscillators cannot be modified through
coupling to vacuum modes by more than the initial vacuum
energy contained within them, ΔU=Uð0Þ ≤ 1.

For polaritonic chemistry phenomena, it is also relevant
to know the absolute change in ground-state energy.
Comparing ΔU from both approaches on the same plot
is valuable as it reveals their qualitatively different behavior
with respect to L. Unlike the relative energy difference,ΔU
obeys a fundamentally different L scaling. The single-mode
Hopfield ZPE increases linearly with L in tightly confined
cavities (L ≪ πc=ω0) and saturates at a constant value
determined by the polaritonic gap Δpol=2 in large ones
[Fig. 2(b)], which is unphysical, since L → ∞ corresponds
to the absence of a cavity (see SM Sec. III C [38]). By
contrast, the Lifshitz energy rapidly decreases with increas-
ing L, reaching its static limit scaling with L−3 already
around L ¼ 50 nm.
Temperature effects and non-PEC mirrors—Lifshitz’s

formalism, in contrast to the single-mode Hopfield
Hamiltonian, can easily incorporate the effects of temper-
ature and nonperfect cavity mirrors made of real materials.
At a finite temperature T, the integral over imaginary
frequencies in Eq. (4) is replaced by a sum over Matsubara
frequencies ξj ¼ 2πjkBT=ℏ, where kB is the Boltzmann
constant, j ¼ 0; 1; 2;…, and the term with j ¼ 0 is multi-
plied by 1=2. Non-PEC mirrors can be accounted for in
Eq. (4) by evaluating their associated Fresnel coefficients,
r�p;s. At sufficiently high temperatures or distances L,
classical thermal fluctuations completely dominate quan-
tum ones (see SM Sec. III B [38]). Instead of the Casimir
power law ∝ ℏcL−3, in the classical limit the energy scales
as ∝ kBTL−2 [31,58,59]. In this limit, only the ξ ¼ 0
contribution remains. Moreover, in this effectively electro-
static limit, the reflection becomes perfect not only for
PECs but even for realistic Drude mirrors (although
the reflection for s polarization vanishes for ξ ¼ 0), and
the contribution of εðiξ; gÞ completely vanishes. This can
be clearly seen in Figs. 2(c) and 2(d), which show the
Lifshitz energy for gold mirrors (Drude model) at different
temperatures. UCð0Þ deviates from the PEC L−3 scaling at
L < 1 μm but reaches a similar classical limit L−2 scaling
at L ≈ 4 μm. On the other hand, UCðgÞ merges with UCð0Þ
when they both reach the classical limit [Fig. 2(c)]. This
shows a complete absence of vacuum-induced energy shifts
in mid-infrared FP cavities at room temperature [Fig. 2(d)].
Casimir-Lifshitz energy and cavity polaritons—

Figure 3(a) shows the absolute value of Casimir-Lifshitz
energy for varying couplings, calculated with Eq. (4) for
realistic FP cavities with gold mirrors and molecular
oscillators in water. When the cavity is tuned to the
oscillator resonance,ω0 ¼ ωL, we do not observe a resonant
behavior of the vacuum energy, similar to the nonresonant
effect of Casimir-Polder shifts on chemical reactions [60].
Instead, it is gradually suppressed with increasing g,
whereas the transmission spectra display typical polariton
splitting with USC and even DSC features appearing at
progressively increasing couplings; see the inset in Fig. 3(a).
Thus, polaritons are indeed present, but they do not exert a
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FIG. 2. (a) Relative change of the ground-state energy vs
coupling g in a PEC cavity at T ¼ 0 K and L ¼ 100 nm
according to Lifshitz (red) and single-mode Hopfield (gray)
approaches. The static screening approximation (SSA) is
shown in dashed lines. USC and deep strong coupling (DSC)
denote ultrastrong and deep strong coupling regimes, respectively.
(b) Absolute change of the ground-state energy vs L at T ¼ 0 K,
with the left axis for Lifshitz and the right one for single-mode
Hopfield solutions. (c) Casimir-Lifshitz energy of the cavity with
30-nm gold mirrors on a glass substrate at T ¼ 300 K without
(black) and with (red) a medium (with bulk coupling g ¼ ω0).
SSA results are depicted by dashed lines. (d) Absolute change in
ground-state energy at different temperatures. SSA works per-
fectly at T ¼ 0 K, as expected. In all plots ω0 is tuned to the main
mode of L ¼ 100 nm cavity (ω0 ¼ ωL¼100 nm).
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resonant effect on the ground-state energy. This prediction
could be tested experimentally, e.g., by extracting the
Casimir energy from the total equilibrium potential of
self-assembled microcavities [61–63] or by examining the
corresponding pressure using a liquid-phase AFM [64–66]
(see SM Sec. V [38]). As a simple illustrative estimate, we
use Eq. (5), which at g ≪ ω0 yields ΔU=Uð0Þ ≈ 2 g2=ω2

0,
thus leading to a 2% relative change at g ¼ 0.1ω0.
Given that chemical processes usually occur at the level

of individual molecules, a key characteristic of polaritonic
chemistry is the ground-state change per molecule [67].
Assuming that all N molecules contribute independently,
we can simply divide the Casimir-Lifshitz energy by the
number of molecules. For gold mirrors, the Lifshitz
energy per molecule in the van der Waals limit is
UCS=N ¼ UC=ðρLÞ ∝ L−3, where ρ is the concentration
of the molecules. The same scaling law is known for the
nonretarded Casimir-Polder (London) energy [68]. Notice
that even in extremely small nanocavities (L < 10 nm) the
energy corrections in the USC and even DSC regimes are
smaller than kBT at room temperature; see Fig. 3(b).
To conclude, using Barash-Ginzburg theory to regularize

the infinite sum of polaritonic zero-point energies, we have
derived the exact ground-state energy change of a material

characterized by a Lorentz permittivity when embedded in
a Fabry-Perot cavity. In this way, our Casimir-Lifshitz
calculation provides the ground-state energy associated
with the full cavity QED Hopfield Hamiltonian. We show
that the cavity-modification is mainly governed by the
quasistatic response and that cavity polaritons do not exert a
resonant effect on the ground-state energy. We have
compared the results of this full calculation with those
obtained with the commonly used single-mode Hopfield
Hamiltonian, showing the severe limitations of this
approach. We have also analyzed temperature effects and
incorporated mirror losses. To test our findings, we suggest
using Casimir measurements in Fabry-Perot cavities to
experimentally probe ground-state modifications, thus
bridging Casimir and polariton physics.
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