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Memory loss is contagious in open
quantum systems
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Markovian (memoryless) system-bath interactions play a fundamental role across physics, chemistry,
and biological systems. Typically, such memoryless behavior arises from the bath’s properties. Here,
we reveal a distinct mechanism: when a system interacts with both aMarkovian and a non-Markovian
bath, losses induced by the former suppress memory effects from the latter, making the interaction
appear more Markovian. This effect leads to a direct interplay between independent baths, where
Markovianity becomes “contagious,” transferring between them via their common system. To
describe this phenomenon, we introduce a Bloch-Redfield-inspired approach that accurately
captureshowa lossysystem,governedbyaLindbladmaster equation, interactswith anon-Markovian
bath. Beyond offering new insights into dissipative dynamics, this framework provides a
computationally efficient alternative for modeling complex system-bath interactions across a broad
range of scientific disciplines.

No physical system is ever fully isolated from its environment, and the
possibility of exchanging energy or particles with the baths/reservoirs in the
environment induces dissipation. This is a fundamental aspect of open
quantum systems1,2, ubiquitous in nature and technology. System-bath
interactions are typically classified as either Markovian (memoryless) or
non-Markovian. Markovianity, which refers to the evolution of a system
that depends only on its present state, holds great importance not only for
characterizing many processes but also as an efficient approximation that
reduces conceptual and computational complexity1–5. In open quantum
systems, the bath autocorrelation function C(t) describes the memory the
bath retains at time τ + t > τ of its interaction with the system at time τ1,2.
Therefore, a bath is considered Markovian when C(t) decays to zero faster
than any other timescale of the problem, a property determined by the
internal structure and dynamics of the bath.

When a system interacts simultaneously with Markovian and non-
Markovianbaths, its dynamics are affectedby the interplay between the two.
For example, it was shown that the non-Markovian bath governs the
dynamics at early times, while theMarkovian bathdominates at later times6.
More generally, when two independent baths interact with the system
through coupling operators that do not commute with each other or with
the systemHamiltonian, they cannot be described by a single effective bath
whose effect is merely the sum of the individual effects of both of them7–10.
Accounting for their nonadditive effect usually requires computationally
demanding approaches such as tensor network methods9 or approximate
methods such as the reaction coordinate framework10,11 or the polaron
transformation12.

In this article, we demonstrate that the interplay between aMarkovian
and a non-Markovian bath, both coupled to the same system (as sketched in
Fig. 1), can induce a distinct type of memoryless interaction. Specifically,
dissipation from the Markovian bath causes the system to lose memory of
thenon-Markovianbath faster thanpredictedby thebath’s properties alone,
effectively rendering the originally non-Markovian interactionmemoryless.
This implies that, in some sense, Markovianity is “contagious” and can be
transferred from one bath to another through the system with which they
both interact. We capture this effect using a master equation derived
within the interaction picture of the effective non-Hermitian (NH)
Hamiltonian13, which describes the coherent part of the system dynamics
due to the memoryless bath. This framework accounts for the decay of
coherence in the system over time, causing the system’s eigenstates to
“forget” the correlation function of the originally non-Markovian bath. As a
result, the system no longer samples the bath with unlimited frequency
resolution, averaging out fine details in a way that gives rise to an emergent
Markovian interaction. Ourmemorylessmaster equation thus incorporates
both baths and naturally accounts for their nonadditivity, providing a
computationally efficient alternative to existing methods, with broad
applicability in quantum mechanics, including optics14, acoustics15, quan-
tum thermodynamics16–18, and chemistry19–21.

Results and Discussion
In this section, we first introduce the Bloch-Redfield for lossy systems (BR
LS) approach, which yields amemoryless master equation that captures the
effects of both Markovian and non-Markovian baths, including their
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nonadditivity. We then benchmark BR LS against numerically exact
simulations, demonstrating its higher accuracy compared to the standard
Bloch-Redfield (BR) equation and confirming the effective memoryless
behavior it assigns to the non-Markovian bath. Next, we quantify non-
Markovianity using the trace distance method, showing that increasing
system losses enhances the Markovian character of the dynamics and
clarifying the distinct physical origin of this effect. Finally, we show that a
transition-dependent effective spectral density for the non-Markovian bath
emerges naturally within the BR LS framework, providing further insight
into how the Markovian bath influences the non-Markovian one and sug-
gesting a way to incorporate this influence within the standard BR
formalism.

The BR LS approach: a memoryless master equation capturing
baths’ nonadditivity
We consider a quantum system coupled to two independent bosonic baths,
one non-Markovian and the other Markovian, with the coupling strengths
gb and gb0 as shown in Fig. 1a. This setup is described by the Hamiltonian:

Ĥsþbþb0 ¼ Ĥs þ Ĥb þ Ĥb0 þ gbV̂sÛb þ gb0 V̂
0
sÛb0 ; ð1Þ

where Ĥs; Ĥb; Ĥb0 are the system and the two baths Hamiltonians; V̂s; V̂
0
s

are the system operators that couple to each bath and obey either
½V̂s; V̂

0
s�≠ 0 or ½Ĥs; V̂

0
s�≠ 07; and Ûb ¼

R1
0 dω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JbðωÞ=g2b

p
ðbω þ byωÞ

and Ûb0 ¼
R1
0 dω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jb0 ðωÞ=g2b0

q
ðb0ω þ b0yωÞ are the bath operators which

couple them to the system, where bω; b
0
ω (byω; b

0y
ω) are the bosonic anni-

hilation (creation) operators of the baths, and Jb(ω), Jb0 ðωÞ are their spectral
densities, related to their autocorrelation functions (at zero temperature) by
CbðtÞ ¼

R1
0 dωJbðωÞe�iωt and Cb0 ðtÞ ¼

R1
0 dωJb0 ðωÞe�iωt. We treat the

situation where Jb(ω) is structured and sharp in energy, while Jb0 ðωÞ is
unstructured and even constant, as is exemplified in Fig. 1c. The width of the

system-bath arrows in Fig. 1a, b indicates the Markovian (non-Markovian)
character of the interaction, representing the associated broad (sharp) energy
spectrum.

First,weuse thememoryless character of theMarkovian bath b0, whose
Cb0 ðtÞ decays on a timescale much shorter than both the system dynamics
and the interaction with the non-Markovian bath. The clear separation of
timescales justifies treating the Markovian bath’s influence locally on the
system using a Lindblad master equation with operators acting directly on
the system degrees of freedom1,22. This results in the master equation (ℏ = 1
here and later)

dρsþb

dt
¼ � i ½Ĥs þ Ĥb þ gbV̂sÛb; ρsþb� þ

X
A0

γA0 L̂Â0 ½ρsþb�

¼ � i ðĤρsþb � ρsþbĤ
yÞ þ

X
A0

γA0 Â
0
ρsþbÂ

0y
ð2Þ

associatedwith the setupof a lossy systeminteractingwith anon-Markovian
bath presented in Fig. 1b using the total loss rate γ. Here, ρs+b is the density
matrix that includes the degrees of freedom of the system and the non-
Markovian bath. The system’s interaction with the Markovian bath is
encoded by the Lindblad superoperators: L̂Â0 ½ρ� ¼ Â0ρÂ0y � 1

2 fÂ0yÂ0; ρg,
where Â0 are the jump operators associated with the loss rates γA0 and
originating from V̂ 0

s and Jb0 ðωÞ1. In the second line, we have rewritten the
equation in terms of the effective non-Hermitian Hamiltonian
Ĥ ¼ Ĥs þ Ĥb þ gbV̂sÛb, with Ĥs ¼ Ĥs � i

2

P
A0 γA0 Â0yÂ013, which

describes the coherent part of the dynamics, including the dissipation to
the Markovian bath due to the anticommutator in L̂Â0 ½ρ�. The remaining
term describes the incoherent reappearance of this population after the
dissipation-induced “quantum jumps”. The NH character of Ĥs implies
that the system’s energy levels acquire afinite linewidth. In the following, we
demonstrate that this broadeningplays a key role in accounting for the effect
of the memoryless bath when evaluating the system’s interaction with the
non-Markovian one.

To treat the non-Markovian bath, we draw inspiration from BR
theory23,24, originally designed for the perturbative andMarkovian regime of
system-bath interactions and yielding the Lindblad description under a
secular approximation1. We extend this framework by replacing the Her-
mitian Hamiltonian Ĥs with the non-Hermitian Hamiltonian Ĥs, which
more accurately captures the system dynamics under the influence of the
Markovian bath. This substitution effectively incorporates the influence of
the Lindblad superoperators through the finite coherence lifetime and
energy-level broadening encoded in Ĥs. As a result, these features enter
naturally into the interaction with the non-Markovian bath and, as we will
see below, allow the extended framework to capture the Markovianity of
dynamics that would otherwise appear non-Markovian in standard BR
theory. To achieve this, we describe the systemdensitymatrix ρs(t) using the
eigenstates of Ĥs and its Hermitian conjugate Ĥy

s . These eigenstates,
denoted as ∣i) for Ĥs and ∣j

*) for Ĥy
s , where the notation ∣ . . . Þ, . . .ð ∣ rather

than ∣ . . . i, . . .h ∣ is used to describe the right and left eigenstates of NH
Hamiltonians25, are associated with the complex eigenvalues ωi � i Γi

2 and
ωj þ i

Γj
2 , respectively. The real partωi/j encodes the states’ energy, while the

imaginary part Γi/j encodes their loss rate, also associated with their
linewidths25. The Markovian assumption is then applied while accounting
for the decay of the states’ norm and coherence by working in a frame that
captures both these losses and the dynamics arising from the interaction
with the non-Markovian bath. Consequently, this extended BR for lossy
systems (BR LS) yields a memoryless master equation for ρs(t) from the
interaction between the lossy system (incorporating the influence of the
Markovianbath) and thenon-Markovianbath. The full derivation of theBR
LS approach is given in Supplementary Note 1, and its benchmarking is
discussed below.

Fig. 1 | System coupled to Markovian and non-Markovian baths. a, b Two
equivalent descriptions of a lossy system coupled to a non-Markovian bath with
strength gb. In a, losses are modeled through coupling gb0 to aMarkovian bath, while
in (b) they are represented explicitly by the decay rate γ. In the latter case, the loss is
an intrinsic property of the system, highlighted by the yellow background, and
consequently the coupling to the non-Markovian bath (green arrow) is dressed by
the interactionwith theMarkovian bath (yellow arrow). c Spectral densities of a non-
Markovian bath (in black) and a Markovian bath (in grey) and an example of a
transition spectrum between two lossy states (Ti→f (ω) in red).
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The resulting BR LS master equation, including the effects of both
baths, reads as

dρsðtÞ
dt

¼� i ½Ĥs; ρsðtÞ� þ
X
A0

γA0 L̂Â0 ½ρs�

þ
X
a;b;c;d

Rabcd ∣aÞ cð ∣ρsðtÞ∣d�Þ b�ð ∣;
ð3Þ

where the Lindblad superoperators are also present in order to accurately
describe the Markovian bath effect. The first term describes the system’s
internal dynamics, the second term encodes the dissipation induced by the
memoryless bath, and the third term presents the influence of the non-
Markovian bath dressed by the former dissipation and given by the BR LS
tensor,

Rabcd ¼ δbd
X
q

Fcdq
~Vaq

~Vqc þ δac
X
q

F�
dcq

~V
�
dq
~V
�
qb

� ðFcda þ F�
dcbÞ~Vac

~V
�
db;

ð4Þ

where ~Vij ¼ ðijV̂sjjÞ, ~V
�
ij ¼ ði�jV̂ sjj�Þ, and Fjsq ¼

R1
0 dτCbðτÞe�

1
2ðΓqþΓsÞτ

e�iðωq�ωjÞτ is the one-sided Fourier transform of Cb(t) evaluated at the

complex frequency ~ωjsq ¼ ωj � ωq þ i
ΓsþΓq

2 . Importantly, Eq. (4) has the
same computational complexity as the standard BR under a secular
approximation, substituting complex frequency ~ωjjq rather than a real one
ωj−ωq, and it reproduces the standard BR tensor when neglecting the losses
Γq,Γs

1,26. In addition, similar toBR, it preserves the trace of thedensitymatrix
(see SupplementaryNote 4).While the BR approach is accurate whenCb(τ)
decays rapidly, as it happens for Markovian baths, BR LS only requires the

rapid decay of CbðτÞe�
1
2ðΓqþΓsÞτ . Yet, BR LS captures different features from

those obtainedwhen retaining the full timedependence of the integral limitsR t
0 in the BR tensor. While such a time-dependent BR approach would

capture the imperfect frequency resolution over short time scales, BR LS
instead takes into account the system’s finite linewidths and nonadditive
effects. Thus, it sheds light on the interplay between the two baths in
inducing memoryless dynamics, showing that when the Markovian bath
causes sufficiently fast loss of coherence in the system, the influence of a
nominally non-Markovian bath can be described by a Markovian term
using Rabcd.

The BRLS approach introduced above is relevant for any system fea-
turing losses and weakly interacting with an external bath, independently
fromtheMarkovianbath responsible for its losses. It obtains accurate results
also when the quantum jump terms associated with theMarkovian bath are
relevant for the dynamics, as happens, e.g., when they describe dephasing
instead of decay (see Supplementary Note 7). However, BR LS is not valid
when the losses are larger than the system’s energies and the Lindblad
formalism may introduce artificial pumping of the ground state27. More-
over, similar to BR28, it can violate positivity when the weak-coupling
assumption for the interaction with the non-Markovian bath breaks down.

BR LS performance in reproducing the numerically exact
dynamics
We apply the BRLS for a cavity-quantum electrodynamical (QED) setup in
which quantum emitters are strongly coupled to a cavity light mode. These
setups, which attract great attention and offer themanipulation of quantum
properties of both light and matter29–34, can often be described in terms of
two different baths. The first, electromagnetic, one induces decay of the
cavity mode due to absorption and radiation losses, as well as spontaneous
emission of the emitters. It often has a broad spectrum and is therefore
Markovian14. The second bath describes phonon-exciton interactions and
can be highly structured and therefore non-Markovian. Specifically, several
types of emitters used in cavity QED setups, such as molecular J- and
H-aggregates35–37 or quantumdots38,39, canbedescribed as two-level emitters
coupled to structured phononic baths. Then, the effective NH system

Hamiltonian for an ensemble ofN emitters, including the coherent parts of
the Lindblad operators γcL̂Â0¼a and γeL̂Â0¼σ j� , is given by the NH Tavis-
Cummings (TC) model40:

Ĥs ¼ ~ωca
yaþ

XN
j

~ωeσ
j
þσ

j
� þ gecffiffiffiffi

N
p ðayσ j� þ σ jþaÞ

� �
: ð5Þ

Here, a (a†) and σ j� (σ jþ) are the annihilation (creation) operators for the
cavity mode and the j-th emitter, respectively, and the coupling strength
between the cavitymode and eachemitter is gec=

ffiffiffiffi
N

p
. The energies inEq. (5)

are complex due to the coupling to the Markovian bath, denoted by ~ωc ¼
ωc � i

2 γc and ~ωe ¼ ωe � i
2 γe, where the loss of the cavity mode γc can be

very large, particularly for metallic nanocavities or nanoresonators, which
can achieve the strong-coupling regime in the emitter-cavity interaction41–45.
Furthermore, each emitter is coupled to a different non-Markovian
phononic bath through the coupling operator V̂

j
s ¼ σ jþσ

j
�.

In the following, we study the population transfer between the eigen-
states of Ĥs given in Eq. (5), which vanishes in the absence of the phononic
baths (i.e., for gb = 0 and Jb(ω) = 0), thereby isolating the dynamics they
induce (see Supplementary Fig. S1 and Supplementary Note 3). This iso-
lation relies on the decay-only structure of the Markovian bath in this
example; however, the BR LS approach remains applicable even when the
Markovian bath induces dephasing (see Supplementary Note 7). When
gec >

jγc�γej
4 and ωe = ωc, Ĥs has two hybrid light-matter eigenstates, known

as polaritons, with complex energies ωe ± gec � i
2 Γp where Γp ¼ γeþγc

2 is
their loss rate. The lower-energy state is typically called the lower polariton
(LP), while the higher-energy state is known as the upper polariton (UP).
The other states arising when N ≥ 2 are pure excitonic states with the
complex energy ~ωe, usually termed as dark states (DS)46.

As a test case, we consider a single emitter (N = 1 in Eq. (5)) with an, in
principle, non-Markovian phononic bath whose spectral density is plotted
in black in Fig. 1c and given by

JbðωÞ ¼ ΘðωÞ 2g
2
b

π

κωωb

ðω2 � ω2
bÞ2 þ κ2ω2

; ð6Þ

whereΘ(ω) is theHeaviside function that is zero forω< 0,ωb= 0.2 eV, κ=5
meVand gb=0.03 eV.No thermal populationof the bath is considered.This
test case can be solved by the numerically exact discretization method
(detailed in the supplemental material of ref. 27), which directly discretizes
the bath and treats the complete lossy system coupled to non-Markovian
bath setup. We use it to benchmark BR LS and analyze the Markovian
character of the dynamics. In Fig. 2, we compare the population of the LP
calculated by the BR LS and the numerically exact approaches as a function
of the Rabi splittingωUP−ωLP≈ 2gec and the time t, where the initial state is
the UP, γc = 0.1 eV, γe = 0.1 meV and ωc = ωe. In addition, we present in
Fig. 2c the population transfer obtained by the standard BR method that
treats the phononic bath independently from the system losses46. The
absolute differences between BR LS and BR and the exact results are
presented in Supplementary Fig. S3. As BR is incapable of treating non-
Markovian baths and does not account for the interplay between the two
baths, the results that it yields (Fig. 2c) significantly differ from the exact
results (Fig. 2a). However, the BR LS (Fig. 2b) obtains much better
agreement, particularly for times longer than the lifetime of the states, i.e.,
t > τp ¼ 1

Γp
� 13 fs, verifying the memory loss of the interaction with the

non-Markovian bath due to the system loss as assumedwithin the BRLS. In
Supplementary Fig. S4, we show that similar agreement is obtained for all
elements of the system density matrix, not just the populations.
Furthermore, we show in Supplementary Fig. S5 that BR LS also provides
good agreement with the exact results when the Markovian bath induces
pure dephasing instead of decay, i.e., is described by a Lindblad
superoperator given by γcL̂A0¼aya. These checks confirm the generality of
BR LS.
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Measuring the non-Markovianity as a function of the system
losses using the trace distance method
To highlight that the introduction of losses into the system increases the
Markovianity of its dynamics, which can then be described by the mem-
oryless BR LS approach, we use the trace distance method47, designed for
measuring the non-Markovianity in open quantum systems, to analyze the
test case studied in Fig. 2. In this approach, the non-Markovianity is com-
puted by

NM ¼
X
j

½Dðρm1 ðtf ;jÞ; ρm2 ðtf ;jÞÞ � Dðρm1 ðti;jÞ; ρm2 ðti;jÞÞ�: ð7Þ

Here, Dðρm1 ðtÞ; ρm2 ðtÞÞ is the trace distance between two density matrices of
the system, ρm1 ðtÞ; ρm2 ðtÞ, associated with different initial states and yielding
themaximal sum inEq. (7),where the index j sumsover all the time intervals
(ti,j, tf,j) for which the trace distance increases. We treat the non-Markovian
bath using the numerically exact discretization method, and similar to
ref. 47, identify the optimal pair of ρm1 ðtÞ; ρm2 ðtÞ by sampling 5002 pairs of

initial states of the form ðCca
y þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

c

q
eiϕσþÞ∣0i, where the coefficient

Cc varies from 0 to 1 and the phase ϕ from 0 to 2π. This yields the optimal
pair: ρm1 ð0Þ ¼ ∣þi þh ∣; ρm2 ð0Þ ¼ ∣�i �h ∣, where ∣± i ¼ 1ffiffi

2
p ðσþ ± iayÞ∣0i. In

Fig. 3, we plot the computed non-Markovianity, describing the backflow of
information from the non-Markovian bath into the system, as a function of
γc, where gec = 0.1 eV (such that the UP-LP transition is resonant with
the peak of the phononic spectral density) and the other parameters are the
same as for Fig. 2. As can be seen, the non-Markovianity drops when
the system loss, reflecting the coupling with the Markovian bath,
increases. This confirms the transfer of Markovianity between the baths.

In addition, to emphasize the distinct mechanism for Markovianity,
which arises from the short lifetime of the system rather than from the rapid
decay of the bath autocorrelation function, we plot in the inset of Fig. 3 the
value of NM calculated by Eq. (7), but restricted to time intervals (ti,j, tf,j)
satisfying ti,j>2/γc≈ τp.While at low loss, this quantity increaseswith γc (due
to the inclusion ofmore intervals), the trend reverses for γc > κ= 5meV, i.e.,
when the system decays faster than the bath’s autocorrelation function. In
this regime, theMarkovianity of the dynamics is governed not by the bath’s
memory time but by the system’s inability to retain coherence long enough
to resolve temporal features of the bath autocorrelation function. As a result,
the non-Markovianity approaches zero, indicating that the dynamics
become effectively Markovian for times longer than the system lifetime,
even though the bath itself is non-Markovian. This observation aligns with
the agreement between BR LS and the exact results shown in Fig. 2.

Transition-dependent effective spectral density for the non-
Markovian bath
The numerically exact results shown in Fig. 2a present bath-driven popu-
lation transfer over a larger range of Rabi splittings than would be expected
from inspecting the bandwidth of the bath spectral density Jb(ω) presented
in Fig. 1c. We use the BR LS approach to show that this broadening stems
from the broad linewidth of the energy-dependent transition spectrum,

given by Ti!f ðωÞ ¼ 1
π

1
2ðΓiþΓf Þ

ðωi�ωf�ωÞ2þ1
4ðΓiþΓf Þ2

for each transition between two

lossy states i → f, and exemplified in red in Fig. 1c for Γi = Γf = Γp and
ωi − ωf = 0.25 eV. The standard BR approach misses this effect (Fig. 2c),
evaluating the transfer rate KUP→LP only through the spectral density at the
energy difference between the states associated with the maximum of
TUP→LP(ω) (e.g., at the vertical dashed blue line in Fig. 1(c)). Then,
KBR

UP!LP ¼ 2πJbð2gecÞj~VUP!LPj246 where ~VUP!LP ¼ ðLPjV̂sjUPÞ. In
contrast, BR LS captures the broadening of the states (Fig. 2b), and for each
transition i → f naturally yields an effective spectral density that can be
written as

Jeffi!f ðωi � ωf Þ ¼
Z 1

0
dωJbðωÞTi!f ðωÞ; ð8Þ

such that KBR LS
UP!LP ¼ 2πJeffUP!LPð2gecÞj~VUP!LPj2 (see Supplementary

Note 2). JeffUP!LPð2gecÞ is a convolution of Jb(ω) with TUP→LP(ω), high-
lighting the role of the system in mediating the transfer of Markovianity
between the two baths. We emphasize that Eq. (8) describes effective
spectral densities for the system’s interactionwith the non-Markovian bath,
which are different for each system transition i→ f, in contrast to the case of
hierarchical environments48–50 where the baths directly interact with each
other, and their combined effect can be described by a single spectral density
including solely their properties.

Finally, we analyze whether the BR LS can be reproduced with the
standard BR by replacing the spectral density Jb(ω) with a suitably broa-
dened effective density as given by Eq. (8). To do so, we consider the
structured spectral density J0(ω), plotted in black in Fig. 4, which has been
taken from ref. 51 and scaled down by two orders of magnitude to ensure
weak coupling between nuclear and electronic degrees of freedom, as
appropriate for J-aggregates35.Moreover, we considerN= 30 emitters in the
system described by Eq. (5), such that the system has dark states in addition
to upper and lower polaritons. The other parameters are the same as for the
test case above. Three transitions can occur in this setup: UP → LP,
UP→DS, and DS→ LP. Since TUP→DS = TDS→LP, the last two transitions
correspond to the same effective spectral density, Jeff1 ðωÞ, plotted in orange
in Fig. 4. However, the transition UP→ LP that features a broader TUP→LP

corresponds to another and broader effective spectral density, Jeff2 ðωÞ,
plotted in light blue in Fig. 4. As can be seen, both Jeff1 ðωÞ and Jeff2 ðωÞ are

Fig. 3 |Non-Markovianitymeasured by the trace distancemethod.The solid black
line presents the non-Markovianity (NM)during thewhole time evolution,while the
orange one, plotted in the inset, takes into account just the dynamics occurring after
the system’s lifetime 2

γc
� τp .

Fig. 2 | Bath-driven population transfer obtained by different approaches. The
population of the lower polariton (LP) of Eq. (5) (N = 1) obtained by a the
numerically exact calculation, b the introduced Bloch-Redfield for lossy systems (BR
LS), and c the standard Bloch-Redfield (BR), when only the upper polariton (UP) is
populated at t = 0. gec represents half the energy difference between the UP and LP.
The spectral density of the phononic bath driving the population transfer is plotted
in black in Fig. 1(c).
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much smoother than J0(ω), again indicating that a non-Markovian bath can
become Markovian when acting on a lossy system.

Figure 5 presents the population of the UP, DS and LP obtained by BR
using J0(ω), Jeff1 ðωÞ and Jeff2 ðωÞ and by BR LS for gec= 0.2 eV, when theUP is
initially populated. Due to the complexity of the system, its exact solution is
untractable. The vertical lines in Fig. 4 present the energy differences
between the states, i.e.,ωUP− ωDS =ωDS− ωLP ≈ gec andωUP− ωLP ≈ 2gec.
Since the spectral densities are larger for theUP→DS transition than for the
UP→ LP one, and due to the presence ofmany dark states, the dynamics in
Fig. 5 is dominated by the UP→ DS transition, followed by the DS→ LP
transition. Therefore, the results obtained by BRþ Jeff1 ðωÞ, associated with
these transitions, are in excellent agreement with the BR LS results. This
confirms that we can extract a linewidth-dependent effective spectral den-
sity from the BR LS approach to describe the system’s interaction with the
non-Markovian bath. However, the results obtained by BRþ Jeff2 ðωÞ as well
as by BR + J0(ω), which underestimates the spectral density at ω = gec,
present a smaller population transfer to the dark states and therefore to the
lower polariton as well. Note that the slight difference in the population of
the lower polariton between BR LS and BRþ Jeff1 ðωÞ originates from the
contribution of the UP → LP transition, underestimated by Jeff1 ðωÞ since
Jeff1 ð2gecÞ < Jeff2 ð2gecÞ. Moreover, the oscillations appearing in Fig. 5c are
caused by the bath-induced Lamb shift of the system’s energy levels52.

Conclusions
We have demonstrated that the interaction between a system and two
independent baths, one Markovian and one non-Markovian, can result in
memoryless dynamics, driven by the interplay between the baths. Further-
more, the interaction with the non-Markovian bath itself becomes mem-
oryless, as dissipation induced by the system’s interaction with theMarkovian
bath modifies its influence. To capture this phenomenon, we introduced the
BR LS approach, extending traditional Bloch-Redfield theory to account for
Markovian dynamics due to system losses rather than bath properties. By
effectively averaging over the non-Markovian bath’s spectral density, our
approach can be viewed as a coarse-graining of system-bath interactions53

that emerges naturally from intrinsic system dissipation. This method pro-
vides an efficient way to compute the dynamics of lossy systems weakly
coupled to a non-Markovian bath, particularly in regimes where standard
approaches fail and more computationally intensive methods54–56 are typically
required. Given the prevalence of lossy systems in various fields, including
optics14, acoustics15, quantum thermodynamics16–18, and chemistry19–21, our
findings enhance both the understanding of system-bath interactions and the
computational efficiency of modeling complex systems, opening up new
possibilities for studying open quantum systems in these domains.

Data availability
The authors declare that the data supporting the findings of this study are
availablewithin themanuscript and its Supplementary Informationfile.The
numerical source data for Figs. 2-5 are given in Supplementary Data 1.

Code availability
The numerical results presented in this work were obtained using QuTiP
4.757. Functions implementing BR LS are available from the authors upon
reasonable request.
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