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ABSTRACT
The manipulation of low-energy matter properties such as superconductivity, ferromagnetism, and ferroelectricity via cavity quantum elec-
trodynamics engineering has been suggested as a way to enhance these many-body collective phenomena. In this work, we investigate the
effective interactions between low-energy matter excitations induced by the off-resonant coupling with cavity electromagnetic modes. We
extend a previous work by going beyond the dipole approximation accounting for the full polarization and magnetization densities of matter.
We further include the often neglected diamagnetic interaction and, for the cavity, we consider general linear absorbing media with possibly
non-local and non-reciprocal response. We demonstrate that, even in this general scenario, the effective cavity-induced interactions between
the matter degrees of freedom are of electrostatic and magnetostatic nature. This confirms the necessity of a multimode description for cav-
ity engineering of matter systems where the low-energy assumption holds. Our findings provide a theoretical framework for studying the
influence of general optical environments on extended low-energy matter excitations.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0231058

I. INTRODUCTION

The interaction between light and matter has been an intense
field of research since the foundations of quantum electrodynam-
ics (QED) in the last century. One of the most prominent results in
QED is the phenomenon of spontaneous emission:1 an emitter in
an excited state is coupled to the quantum fluctuations of the elec-
tromagnetic (EM) vacuum, allowing it to transfer its energy to an
unoccupied EM state through the emission of a photon. Vacuum
EM fields also induce an energy shift on the emitter energy levels.2
However, in free space, these two effects are relatively weak. A way
to enhance light–matter interactions is to place the emitter inside
a cavity, which confines the EM field and thus increases the prob-
ability of interaction between photons and the emitter. A widely
known result of this strategy is the increase in the spontaneous
emission rate, predicted by Purcell in 1946.3 This prediction gave
birth to the field of cavity QED, opening a new paradigm to control
light–matter interactions through cavity engineering of the vacuum
EM field.

In an early stage, material structures such as Fabry–Pérot cav-
ities filled with emitters were used to obtain new light sources, with
perhaps the best-known example being the laser.4 Although this field
of research remains active, especially with the advent of quantum
light sources,5 in recent years, the inverse approach of modifying
matter properties via cavity-enhanced vacuum fields6,7 has attracted
increasing interest. Two regimes are typically explored: on the one
hand, the regime where the matter transition frequencies are reso-
nant with a cavity mode; on the other hand, the off-resonant regime
where low-energy matter excitations are considered.

The resonant regime has attracted much attention in the com-
munity since, if the light–matter interaction is strong enough,
hybrid light–matter states called polaritons are formed, with prop-
erties different from those of the individual bare matter and EM
states. Both theoretical and experimental investigations have been
carried out to examine these new properties. A striking exam-
ple is the condensation of polaritons due to their (approximately)
bosonic nature and effective interactions mediated by the material
component.8–10 Later studies showed modifications of chemical
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reactions,11,12 enhancement of exciton transport,13–16 and energy
transfer in organic materials17,18 or the control of topological phases
of matter.19 In addition, the cavity-mediated magneto-transport of
two-dimensional electron gases has also been studied, showing that
the linear direct-current resistivity is substantially modified20 as well
as the integer and fractional quantum Hall regimes.21,22

However, there is still a dearth of experimental results for
the cavity-modification of low-energy matter properties. In this
case, the light–matter interaction mechanism is completely differ-
ent from polariton physics. As the matter excitations are detuned
from the cavity EM field, the interaction is off-resonant, resulting
in a cavity-induced effective matter–matter interaction mediated by
virtual photons. It should be noted that these cavity-induced inter-
actions do not necessarily have to be directly mediated by the cavity
field. It is also possible that additional degrees of freedom such as
phonons, plasmons, or magnons are coupled to both the matter
excitations and the cavity EM modes, so that in this case, the EM
modes indirectly mediate the effective matter–matter interactions.
Experimentally, an apparent cavity-induced change in the tempera-
ture of a metal-insulator phase transition has been found, although
the most likely explanation seems to be that this is due to radia-
tive heat transfer,23 which is a well-established effect that does not
rely on microscopic modifications of material properties.24 Theoret-
ical studies in the off-resonant regime have predicted modifications
in superconductivity,25–30 ferromagnetism,31,32 ferroelectricity,33–35

Moiré materials,36,37 and Fermi liquids.38 Recently, a theoretical
work39 has addressed this question from a general perspective.
Under the electric-dipole approximation for the light–matter inter-
action, this work demonstrated that the cavity-induced effective
interactions between low-energy matter excitations, induced either
directly or indirectly by the cavity EM modes, are described by
the EM Green’s tensor evaluated at zero frequency and are thus
electrostatic in nature.40 The main assumption in this work is the
consideration of low-energy matter excitations, with frequencies
much smaller than that of any cavity mode, thus obtaining a fully
non-resonant effective interaction that implies the necessity of sum-
ming over all the cavity EM modes (although it should be noted
that in the thermodynamic limit, the same result is obtained even
without an explicit low-frequency approximation as long as there
is no resonant contribution41). When this assumption is appli-
cable, this theoretical framework shows that cavity engineering
can be easily understood through the conceptually simple con-
sideration of electrostatic interactions, which on the other hand,
also implies that the possibilities of cavity-induced manipulation
of materials are somewhat limited. Nevertheless, this formalism
has been applied to theoretically demonstrate the emergence of
a biquadratic long-range interaction between spins mediated by
their coupling to phonons hybridized with vacuum photons into
polaritons.42

In the present article, we provide an extension of the previous
work39 for the case where the matter states are directly coupled to the
cavity EM modes. We go beyond the electric dipole approximation
for the light–matter interaction, considering the full polarization
and magnetization densities of the matter elements, as well as the
often neglected diamagnetic term. The polarization and magne-
tization densities include the electric and magnetic interactions
to all multipole orders, respectively. This extension is particularly
relevant when considering extended low-energy matter excitations

or nanophotonic platforms,43 where subwavelength field confine-
ment is achieved and strong field gradients can challenge the validity
of the dipole approximation.44 Furthermore, we allow the “cavity”
structure to be made out of general linear absorbing media, includ-
ing non-local and non-reciprocal media, via the theoretical frame-
work of macroscopic QED.45–47 We derive an effective Hamiltonian
for the matter system by using a coherent-path-integral formu-
lation of the partition function in the same way as in Ref. 39.
We demonstrate that with these generalizations, we still recover
the zero-frequency nature of the off-resonant cavity-induced low-
energy matter–matter interactions. Importantly, this result emerges
only when all field modes are considered, highlighting that models
relying on single modes can lead to misleading results.

II. EFFECTIVE HAMILTONIAN
A. General mode description

We start by defining the Hamiltonian for our composite system
consisting of low-energy matter excitations coupled to the EM field
supported by arbitrary cavity structures. We consider a matter sys-
tem, described by N polarization and magnetization densities (each
one describing a set of degrees of freedom), interacting with a set
of quantized EM modes {ân} in the Power–Zienau–Woolley (PZW)
picture.48 The Hamiltonian can be written as46

Ĥ = Ĥle +∑
n

h̵ωnâ†
nân − ∫ d3r

N

∑
i

P̂i(r) ⋅ Ê(r)

− ∫ d3r
N

∑
i

M̂i(r) ⋅ B̂(r) +
N

∑
i
∑
γ ∈ i
[∫ d3r Θ̂γ(r) × B̂(r)]

2
,

(1)

where Ĥle is the bare low-energy matter Hamiltonian, for which we
assume that all internal energies are negligible compared to the rel-
evant EM mode frequencies. The matter Hamiltonian includes the
full information about the matter excitations, the direct interaction
between them, and the dipole self-energy term. The bare EM Hamil-
tonian is represented by a sum over modes with frequencies ωn. The
linear interacting terms are written in terms of the electric and mag-
netic field operators Ê(r) = ∑n Ên(r) = ∑n [En(r)ân + E∗n(r)â†

n]

and B̂(r) = ∑n B̂n(r) = ∑n [Bn(r)ân + B∗n(r)â†
n], where the relation

between the coefficients En(r) and Bn(r) is given by Bn(r) = 1
iωn
∇

× En(r). The Hermitian operators, P̂i(r) and M̂i(r), represent the
polarization and generalized magnetization densities of the ith mat-
ter element, respectively. The generalized magnetization density
includes both the standard atomic magnetization and the so-called
Röntgen magnetization49 given by the center-of-mass motion of the
ith matter element. Both polarization and magnetization density
operators can be formally defined as sums of line integrals of delta
functions along curves joining an arbitrary reference point to the
positions of the charges composing each matter element.50 The last
term in Eq. (1) is the nonlinear diamagnetic term, where the Her-
mitian density operator Θ̂γ(r) depends exclusively on the internal
structure (represented by the index γ) of the ith matter element.46

In particular, it is a function of only the position operator of both
the ith matter element and the individual components of that matter
element.

J. Chem. Phys. 161, 194303 (2024); doi: 10.1063/5.0231058 161, 194303-2

Published under an exclusive license by AIP Publishing

 16 N
ovem

ber 2024 11:12:40

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

We are interested in obtaining an effective Hamiltonian
for the dynamics of the matter degrees of freedom by tracing
out the EM field. The thermodynamic properties of the matter
degrees of freedom are encoded in the canonical partition function,
Z = TrM+F[exp (−βĤ)], with β = (kBT)−1 and the Boltzmann con-
stant kB. The subscript M + F in the trace indicates that the trace is
performed over all matter and field degrees of freedom. Leveraging
the definition of the partition function, we can utilize a coherent-
state path integral approach41,51 to trace out the EM environment
and obtain an effective matter Hamiltonian,

Z = TrM[exp (−βĤeff)], (2)

with

exp (−βĤeff) =∏
n
(∫

d2αn

π
)⟨α∣ exp (−βĤ)∣α⟩. (3)

Here, ∣α⟩ = ⊗n∣αn⟩ = ∣α1⟩⊗ ∣α2⟩⊗ ⋅ ⋅ ⋅ is the tensor product of the
coherent states associated with each EM mode, defined by ân∣αn⟩

= αn∣αn⟩. After some algebra, as detailed in Appendix A, it can be
shown that the effective Hamiltonian reads

Ĥeff =
ˆ̃Hle −∑

i,j
∫ d3r∫ d3r′[P̂i(r) ⋅ λee

(r, r′) ⋅ P̂j(r′)

+ P̂i(r) ⋅ λem
(r, r′) ⋅ M̂j(r′) + M̂i(r) ⋅ λme

(r, r′) ⋅ P̂j(r′)

+ M̂i(r) ⋅ λmm
(r, r′) ⋅ M̂j(r′)], (4)

where ˆ̃Hle = Ĥle + Ĥren is the bare low-energy matter Hamilto-
nian corrected by a renormalization contribution arising from the
diamagnetic term in Eq. (1),

Ĥren =∑
i
∑
γ ∈ i
∫ d3r∫ d3r′Tr[Θ̂γ(r) ×Ω(r, r′) × Θ̂γ(r′)]. (5)

The diamagnetic tensor field Ω(r, r′) is defined as

Ω(r, r′) =Ð→∇r × {∑
n

Re[
En(r)⊗ E∗n(r′)

ω2
n

]} ×
←Ð
∇r′. (6)

Here, we have used a compact notation for the two-

side curl of a tensor field T(r, r′): [Ð→∇r × T(r, r′) ×←Ð∇r′]
αβ

= ∑γδμν εαγδεβμν∂
γ
r ∂

μ
r′T

δν
(r, r′). In the same way, the left- and right-

side curl are defined as [Ð→∇r × T(r, r′)]
αβ
= ∑γδ εαγδ∂

γ
r Tδβ
(r, r′) and

[T(r, r′) ×←Ð∇r′]
αβ
= ∑γδ εβγδ∂

γ
r′T

αδ
(r, r′), respectively.

It can be shown that Ω(r, r′) is equivalent to the equal-time
correlation function of the magnetic field over the EM vacuum
state ∣0⟩: Ω(r, r′) = Re[⟨0∣B̂(r)⊗ B̂(r′)∣0⟩]. This shows that the dia-
magnetic renormalization results from correlations in the vacuum
magnetic cavity field. Another important feature on the nature of
the diamagnetic renormalization in Eq. (6) is that the emission and
reabsorption of the virtual photons responsible for the interaction
occur in the same matter element. This is in contrast to the rest
of the terms on the right-hand side of Eq. (4), which account for
the cavity-mediated interactions between the polarization and mag-
netization densities of the different matter elements. In total, there

are four different effective couplings: a coupling between polariza-
tion densities λee

(r, r′), a coupling between magnetization densities
λmm
(r, r′), and two cross couplings λem

(r, r′) and λme
(r, r′). They

are given by

λee
(r, r′) =∑

n
Re[

En(r)⊗ E∗n(r′)
h̵ωn

], (7a)

λem
(r, r′) = −∑

n
{Im[

En(r)⊗ E∗n(r′)
h̵ω2

n
] ×
←Ð
∇r′}, (7b)

λme
(r, r′) =∑

n
{
Ð→
∇r × Im[

En(r)⊗ E∗n(r′)
h̵ω2

n
]}, (7c)

λmm
(r, r′) =∑

n
{
Ð→
∇r × Re[

En(r)⊗ E∗n(r′)
h̵ω3

n
] ×
←Ð
∇r′}. (7d)

It should be noted that as a consequence of the low-energy
assumption for the matter excitations, these four effective couplings
are independent of the energy of the matter states, manifesting the
non-resonant nature of the interaction. In addition, the structure
of the couplings is independent of the level of approximation made
regarding the polarization and magnetization densities. In compar-
ison with the results obtained in the dipole approximation,39 we
find that incorporating the full polarization and magnetization fields
leads to additional space integrals in the effective Hamiltonian that
account for the extended matter excitations [compare Eq. (4)]. The
dependence of the effective couplings on the field, however, is still
encapsulated in the tensor field,

Fn(r, r′) ≡ En(r)⊗ E∗n(r
′
), (8)

whose properties will determine the electromagnetic character of the
transitions responsible for the effective matter–matter interactions.

B. Mode summation via the macroscopic QED
quantization scheme

The non-resonant nature of the effective couplings in Eq. (7)
implies that single-mode descriptions of the EM field could be mis-
leading. Instead, the sum over all the modes must be considered. To
perform this summation explicitly, we use macroscopic QED,45–47

which provides a quantization scheme for the EM field in arbitrary
dispersive and lossy optical environments with linear response. We
note explicitly that we do not rely on the commonly used assump-
tions of local and reciprocal media. As we show in the following, the
general form of the results does not depend on these assumptions,
although some effective coupling terms will be seen to vanish for
reciprocal media.

Before performing the sum over all the modes, we briefly sum-
marize the quantization procedure of the EM field given by macro-
scopic QED in general non-local and non-reciprocal media:52 The
partial differential equation for the classical electric field resulting
from Maxwell’s equations reads

Ð→
∇r ×

Ð→
∇r × E(r, ω) −

ω2

c2 E(r, ω) − iμ0ω∫ d3r′Q(r, r′, ω) ⋅ E(r′, ω)

= iμ0ωjN(r, ω), (9)
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where Q(r, r′, ω) is the conductivity tensor, which fulfills the
Schwarz reflection principle Q∗(r, r′, ω) = Q(r, r′,−ω∗), jN(r, ω) is
the noise current, and the constants c and μ0 are the vacuum speed
of light and the vacuum permeability, respectively (related by ε0μ0
= 1/c2, with ε0 being the electric constant). The most general form of
Q(r, r′, ω) in nonlocal and nonreciprocal media can be found in Ref.
52 and is used in Appendix B to discuss the behavior of the Green’s
function in the low- and high-frequency limits.

The solution of Eq. (9) can be formally expressed as

E(r, ω) = iμ0ω∫ d3r′G(r, r′, ω) ⋅ jN(r, ω), (10)

where G(r, r′, ω) is the classical dyadic EM Green’s tensor, defined
via

(
Ð→
∇r ×

Ð→
∇r × −

ω2

c2 )G(r, r′, ω) − iμ0ω∫ d3s Q(r, s, ω) ⋅G(s, r′, ω)

= δ(r − r′), (11)

and G(r, r′, ω)→ 0 for ∣r − r′∣→∞. The quantity δ(r − r′) is the
delta tensor, defined by δ(r − r′) = Iδ(r − r′), where I is the identity
tensor and δ(r − r′) is the delta function.

The EM field can then be quantized by choosing
jN(r, ω) as the dynamical variable and promoting it to operator
form ĵN(r, ω), with commutation relations [ĵN(r, ω), ĵ†N(r

′, ω′)]
= h̵ω

π δ(ω − ω′)QH(r, r′, ω), where QH(r, r′, ω) ≡ [Q(r, r′, ω)
+Q†
(r′, r, ω)]/2 is the Hermitian part of the conductivity

tensor. It should be noted that these commutation relations are not
bosonic, but bosonic operators f̂(r, ω) can be defined by

ĵN(r, ω) =

√
h̵ω
π ∫

d3r′R(r, r′, ω) ⋅ f̂(r, ω), (12)

such that [ f̂(r, ω), f̂ †
(r′, ω′)] = δ(ω − ω′)δ(r − r′), where

R(r, r′, ω) is defined via ∫ d3sR(r, s, ω) ⋅ R†
(r′, s, ω) = QH(r, r′, ω).

With all this machinery, we can define the electric field
amplitude as

G(r, r′, ω) = iμ0ω

√
h̵ω
π ∫

d3s G(r, s, ω) ⋅ R(s, r′, ω), (13)

such that the electric field operator can be written in the following
compact way:

Ê(r) = ∫
∞

0
dω∫ d3r′G(r, r′, ω) ⋅ f̂(r′, ω) +h.c. (14)

This definition allows us to write the EM tensor field Fn(r, r′)
in the macroscopic QED formalism in an elegant way,

F mQED
(r, r′, ω) = ∫ d3sG(r, s, ω) ⋅G†

(r′, s, ω)

=
h̵ω2

πε0c2 GAH(r, r′, ω), (15)

where the discrete index n has been substituted by the contin-
uous frequency ω and spatial indices s, with the spatial coor-
dinate already integrated over, and the subscript AH denotes

the anti-Hermitian part defined via GAH(r, r′, ω) ≡ [G(r, r′, ω)
−G†
(r′, r, ω)]/(2i). The second equality in Eq. (15) is proved

in Ref. 52.
This important result permits us to write the effective couplings

in Eq. (7) in terms of the EM Green’s tensor,

λee
(r, r′) =

1
πε0c2∫

∞

0
dωωRe[GAH(r, r′, ω)], (16a)

λem
(r, r′) = −

1
πε0c2∫

∞

0
dω{Im[GAH(r, r′, ω)] ×←Ð∇r′}, (16b)

λme
(r, r′) =

1
πε0c2∫

∞

0
dω{Ð→∇r × Im[GAH(r, r′, ω)]}, (16c)

λmm
(r, r′) =

1
πε0c2∫

∞

0
dω{Ð→∇r ×

1
ω

Re[GAH(r, r′, ω)] ×←Ð∇r′}

(16d)
and, in the same fashion, the diamagnetic tensor field in Eq. (6) as

Ω(r, r′) =
h̵

πε0c2∫

∞

0
dω{Ð→∇r × Re[GAH(r, r′, ω)] ×←Ð∇r′}. (17)

Macroscopic QED thus provides a natural way to write the effective
Hamiltonian in Eq. (4) in terms of the EM Green’s tensor, result-
ing in a practical approach to compute the effect of general optical
environments on the matter system.

In order to perform the remaining integral over frequencies, we
rewrite the integrands by using the relations,

Re[GAH(r, r′, ω)] =
1
2

Im[G(r, r′, ω) +GT
(r′, r, ω)], (18a)

Im[GAH(r, r′, ω)] = −
1
2

Re[G(r, r′, ω) −GT
(r′, r, ω)], (18b)

which are obtained by introducing the decomposition G(r, r′, ω)
= Re G(r, r′, ω) + i Im G(r, r′, ω) in the definition GAH(r, r′, ω)
= [G(r, r′, ω) −G†

(r′, r, ω)]/(2i). The integrals appearing in the
effective couplings are straightforwardly computed by using the
identities Rez = 1

2(z + z∗) and Imz = 1
2i(z − z∗), and the Schwarz

reflection principle G∗(r, r′, ω) = G(r, r′,−ω), which permits to
extend the integrals over the full real frequency line. The integrals
can then be computed using contour integration techniques, con-
sidering the analytical properties of the Green’s tensor, which is an
analytic function in the upper complex half plane, with the only pos-
sible pole on the real axis being at ω = 0. More detailed analysis (see
Appendix B for details) reveals that all integrals have at most a first-
order pole at the origin, such that the integrals converge and can be
computed using the residue theorem. The effective couplings then
simplify to

λee
(r, r′) =

1
4ε0c2 [ω

2G(r, r′, ω) + ω2GT
(r′, r, ω)]ω=0

+
1

2ε0
δ(r − r′),

(19a)

λem
(r, r′) =

i
4ε0c2 {

d
dω
[ω2G(r, r′, ω) − ω2GT

(r′, r, ω)]}
ω=0
×
←Ð
∇r′ ,

(19b)
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λme
(r, r′) = −

i
4ε0c2

Ð→
∇r × {

d
dω
[ω2G(r, r′, ω) − ω2GT

(r′, r, ω)]}
ω=0

,

(19c)

λmm
(r, r′) =

1
8ε0c2

Ð→
∇r × {

d2

dω2 [ω
2G(r, r′, ω) + ω2GT

(r′, r, ω)]}
ω=0

×
←Ð
∇r′. (19d)

All Green’s tensors are evaluated at zero frequency, reveal-
ing the electrostatic and magnetostatic nature of the cavity-induced
effective interactions between low-energy matter excitations even
when considering the general beyond-dipole linear light–matter
interaction in Eq. (1). These interaction kernels constitute the main
result of the current paper. They demonstrate that the electrostatic
and magnetostatic nature of low-energy matter–matter interactions
mediated by an arbitrary “cavity” are independent of the level
of approximation used for the light–matter coupling, as long as
the full multimode nature of the EM environment is considered.
Remarkably, within the effective Hamiltonian in Eq. (4), the delta
function in Eq. (19a) exactly cancels out the polarization self-energy

1
2ε0
∑i ∫d3r P̂2

i (r) included in the renormalized bare low-energy

matter Hamiltonian ˆ̃Hle within the Power–Zienau–Woolley pic-
ture used here, such that the effective Hamiltonian resembles the
minimal-coupling form with environment-modified electrostatic
and magnetostatic interactions. In Sec. IV, we explicitly show that
in the absence of media, the well-known free-space interactions are
recovered.

Regarding the renormalization given by the non-linear diamag-
netic term, the previous procedure does not work for evaluating the
integral ∫

∞

0 dωIm[G(r, r′, ω) +GT
(r′, r, ω)], as it cannot be rewrit-

ten as a frequency integral over the full real line. Thus, the final form
for the diamagnetic tensor field is

Ω(r, r′) =
h̵

2πε0c2∫

∞

0
dω{Ð→∇r × Im[G(r, r′, ω)

+ GT
(r′, r, ω)] ×←Ð∇r′} (20)

and does not simplify to a term evaluated at zero frequency. Nev-
ertheless, it remains a non-resonant term, as it is not frequency
selective. This feature can be understood from the interpretation
of the diamagnetic tensor field as the equal-time correlation func-
tion of the magnetic field over the EM vacuum state, Ω(r, r′)
= Re[⟨0∣B̂(r)⊗ B̂(r′)∣0⟩], which is not evaluated at any particu-
lar frequency. Consequently, it is necessary to consider the entire
frequency spectrum.

Further insight into the contribution of the diamagnetic renor-
malization can be provided by comparing its order of magnitude
with the other cavity-mediated interactions between polarization
and magnetization densities. This comparison is clearer and easier
to interpret if we write the effective Hamiltonian in Eq. (4) at lower
order (dipole) in the multipole expansion of the densities P̂i(r),
M̂i(r), and Θ̂γ(r), as well as neglecting the Röntgen magnetization
in M̂i(r) and considering only one matter element. In this limit, the
effective Hamiltonian reads

ĤD
eff =

ˆ̃HD
le − d̂ ⋅ λee

(ri, ri) ⋅ d̂ − d̂ ⋅ λem
(ri, ri) ⋅ m̂

− m̂ ⋅ λme
(ri, ri) ⋅ d̂ − m̂ ⋅ λmm

(ri, ri) ⋅ m̂, (21)

where the superscript D stands for dipole approximation and the
electric and magnetic dipole moments are given by d̂ = ∑γ qγˆ̃rγ

and m̂ = ∑γ
qγ
2

ˆ̃rγ ×
˙̃̂rγ, respectively, with qγ being the charge of the

γ constituent of the matter element and ˆ̃rγ its position operator
relative to the center-of-mass position ri of the matter element.
The only change in the corrected bare matter Hamiltonian, ˆ̃HD

le ,
involves the diamagnetic renormalization contribution, which in
this approximation46 takes the form

ĤD
ren =∑

γ

q2
γ

16π2ε0
Tr{ˆ̃rγ × [

λγ

c ∫
∞

0
dω{Ð→∇r × Im[G(r, r′, ω)

+GT
(r′, r, ω)] ×←Ð∇r′}]

r=ri ,r′=ri

× ˆ̃rγ}, (22)

where we have introduced the Compton wavelength, defined by
λγ = 2πh/(mγc) with mγ being the mass of the γ constituent of
the matter element. By identifying ĤD

ee = d̂ ⋅ λee
(ri, ri) ⋅ d̂, ĤD

em = d̂
⋅ λem
(ri, ri) ⋅ m̂, ĤD

me = m̂ ⋅ λme
(ri, ri) ⋅ d̂, and ĤD

mm = m̂ ⋅ λmm
(ri, ri)

⋅ m̂, we can write

ĤD
ee =∑

γγ′

qγqγ′

4ε0
ˆ̃rγ ⋅ [

ω2

c2 G(ri, ri, ω) +
ω2

c2 GT
(ri, ri, ω)]

ω=0
⋅ ˆ̃rγ′

+
1

2ε0
∑

γ
q2

γ ˆ̃r2
γ δ(0), (23a)

ĤD
em =∑

γγ′
i
qγqγ′

4ε0
ˆ̃rγ ⋅ [{

d
dω
[

ω2

c2 G(ri, r′, ω)

−
ω2

c2 GT
(r′, ri, ω)]}

ω=0
×
←Ð
∇r′]

r′=ri

⋅
1
2

ˆ̃rγ′ ×
˙̃̂rγ′ , (23b)

ĤD
me = −∑

γγ′
i
qγqγ′

4ε0

1
2

ˆ̃rγ ×
˙̃̂rγ ⋅ [
Ð→
∇r × {

d
dω
[

ω2

c2 G(r, ri, ω)

−
ω2

c2 GT
(ri, r, ω)]}

ω=0
]

r=ri

⋅ ˆ̃rγ′ , (23c)

ĤD
mm =∑

γγ′

qγqγ′

8ε0

1
2

ˆ̃rγ ×
˙̃̂rγ ⋅ [
Ð→
∇r × {

d2

dω2 [
ω2

c2 G(r, r′, ω)

+
ω2

c2 GT
(r′, r, ω)]}

ω=0
×
←Ð
∇r′]

r=ri ,r′=ri

⋅
1
2

ˆ̃rγ′ ×
˙̃̂rγ′ , (23d)

and establish a comparison between these terms and the diamagnetic
renormalization. By following the argument in Ref. 40, it should be
noted that the Green’s tensor G(r, r′, ω) scales as r−1, with r being
the typical distance between the charges and the surface of the cavity.
Therefore, the function (ω2

/c2
)G(r, r′, ω) appearing in Eq. (23) has

an order of magnitude of r−3, while the function (λγ/c)G(r, r′, ω)
defining the diamagnetic term in Eq. (22) scales as λγr−2. Thus,
the ratio between ĤD

ren and the terms in Eq. (23) has an order of
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magnitude of λγ/r. As the Compton wavelength for electrons ful-
fills λγ ≈ 10−12 m and the macroscopic description of the cavity that
underpins macroscopic QED ceases to be valid for distances smaller
than 10−9 m, we can safely neglect the diamagnetic renormalization
in our systems of interest.

III. LIMIT OF RECIPROCAL MEDIA
It is instructive to investigate the predictions of our theoretical

framework in the limit of reciprocal media, while still accounting
for the possibility of non-local response. It should be noted that
a spatially local description of typical conducting, semiconducting,
and superconducting materials, where charges move almost freely,
may not be correct, especially when the matter resides close to these
materials.53 Instead, reciprocal media is the most common situa-
tion encountered in cavity QED platforms.54 Physically, reciprocity
describes symmetry with respect to an exchange of positions and
orientations of sources and fields, i.e., the reversibility of optical
paths.

In reciprocal media, one finds that the Green tensor satisfies the
Onsager reciprocity condition GT

(r′, r, ω) = G(r, r′, ω). Using this
relation, the effective couplings take the form

λee
(r, r′) =

1
2ε0c2 [ω

2G(r, r′, ω)]ω=0
, (24a)

λem
(r, r′) = 0, (24b)

λme
(r, r′) = 0, (24c)

λmm
(r, r′) =

1
4ε0c2

Ð→
∇r × {

d2

dω2 [ω
2G(r, r′, ω)]}

ω=0
×
←Ð
∇r′. (24d)

As the cross couplings vanish, the most important implication
of reciprocity is that there are no cross electric-magnetic transitions,
eliminating any chiral effect in the effective Hamiltonian. We note
that this is the case even if there are magnetoelectric media in the
system, as long as they are reciprocal.

IV. LIMIT OF FREE SPACE
As an illustration of Eq. (24), we study the free-space case,

where the EM Green’s tensor is given by

G0(r, r′, ω) = [I +
1
k2
Ð→
∇r ⊗

Ð→
∇r]

eikR

4πR
= −

nR ⊗ nR

k2 δ(R)

+
eikR

4πR
[I − nR ⊗ nR +

(ikR − 1)
k2R2 (I − 3nR ⊗ nR)],

(25)

where R = r − r′, R = ∣R∣, nR = R/R, and k = ω/c. As free space
is reciprocal, the effective electric–magnetic and magnetic–electric
cross couplings vanish. The first term containing a delta function
arises because of the second derivative on the inverse distance 1/R.55

By inserting Eq. (25) into Eq. (24a), we find that the free-space
electric–electric effective coupling reads

λee
0 (r, r′) =

1
2ε0
[−nR ⊗ nRδ(R) +

3nR ⊗ nR − I
4πR3 ] +

1
2ε0

δ(R). (26)

We note that that expressions containing δ(R) are to be under-
stood as functionals acting on another function within an integral, in
this case, the polarization density. As long as the polarization den-
sities are smooth functions, the equivalence nR ⊗ nRδ(R) = 1

3 δ(R)
holds,55 showing the emergence of the well-known 1/3 factor in
the delta-term of the kernel of the free-space electrostatic interac-
tion energy. The overall factor 1/2 accounts for the fact that each
pair of polarizations appears twice in the sum over i and j. As men-
tioned above, the final term of Eq. (26) cancels the polarization
self-energy included in the bare matter Hamiltonian, showing the
recovery of the standard Coulomb interaction as directly obtained
in the minimal coupling scheme.

The evaluation of the free-space magnetic–magnetic effective
coupling is more involved. First, we compute

{
d2

dω2 [ω
2 G0(r, r′, ω)]}

ω=0
=

1
4πR
(I + nR ⊗ nR). (27)

Then, by using the definition of the two-side curl, it can be shown
that the free-space magnetic–magnetic effective coupling reduces to
the well-known kernel of the free-space magnetostatic interaction
energy,

λmm
0 (r, r′) =

μ0

2
[(I − nR ⊗ nR)δ(R) +

3nR ⊗ nR − I
4πR3 ]. (28)

For smooth magnetization densities, the equivalence given above
leads to the standard factor 2/3 in the delta-function part of the
kernel.

This demonstrates how our formalism recovers the free-space
limit, in which no cavity is considered.

V. DISCUSSION AND CONCLUSIONS
We have studied the direct interaction between low-energy

matter excitations and an arbitrary cavity EM field, under gen-
eral conditions of both cavity media and light–matter coupling.
We have considered non-local and non-reciprocal media, and the
full polarization and magnetization densities of matter, as well
as the diamagnetic contribution. Our analysis has confirmed the
zero-frequency (i.e., electrostatic–magnetostatic) nature of the four
effective induced couplings between polarization and magnetiza-
tion densities [Eq. (19)] and revealed the contribution coming
from the diamagnetic term as a non-frequency-selective energy shift
[Eq. (20)]. It should be noted that this procedure can be further
generalized to consider bosonic mediator modes as Ref. 39.

We highlight the non-resonant behavior of the obtained effec-
tive Hamiltonian for the low-energy matter degrees of freedom,
independently of the level of approximation in the matter coupling.
This result demonstrates the importance of considering the full mul-
timode nature of the EM field in the off-resonant regime, especially
indicating that results obtained in a single-mode approximation
have to be considered with care. Moreover, the presented general-
ization of the formalism to extended matter excitations provides a
recipe for studying the field-induced interactions in nanophoton-
ics platforms with strong field gradients, where the electric-dipole
approximation breaks down. Finally, the electrostatic–magnetostatic
nature of the effective induced interactions imposes a clear limit on
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the possibilities of cavity engineering on matter systems where the
low-energy assumption applies.
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APPENDIX A: DERIVATION OF THE EFFECTIVE
HAMILTONIAN

The starting point is the formal definition of the effective
Hamiltonian in Eq. (4). The first step is to compute the multi-
coherent-state expectation value ⟨α∣ exp (−βĤ)∣α⟩ in the thermody-
namic limit,41,51

exp (−βĤeff) =∏
n
(∫

d2αn

π
) exp{−β[Ĥle +∑

n
h̵ωn∣αn∣

2
−∑

n
∫ d3r∑

i
P̂i(r) ⋅ En(r)αn

−∑
n
∫ d3r∑

i
P̂i(r) ⋅ E∗n(r)α

∗
n −∑

n
∫ d3r∑

i
M̂i(r) ⋅ Bn(r)αn −∑

n
∫ d3r∑

i
M̂i(r) ⋅ B∗n(r)α

∗
n

+∑
nm
∫ d3r∫ d3r′∑

i
∑
γ ∈ i
(Tr[Θ̂γ(r) × Bn(r)⊗ Bm(r′) × Θ̂γ(r′)]αnαm

+ Tr[Θ̂γ(r) × Bn(r)⊗ B∗m(r
′
) × Θ̂γ(r′)]δnm + Tr[Θ̂γ(r) × Bn(r)⊗ B∗m(r

′
) × Θ̂γ(r′)]αnα∗m

+ Tr[Θ̂γ(r) × B∗n(r)⊗ Bm(r′) × Θ̂γ(r′)]α∗n αm + Tr[Θ̂γ(r) × B∗n(r)⊗ B∗m(r
′
) × Θ̂γ(r′)]α∗n α∗m)]}. (A1)

Here, we have used the definition of the electric and
magnetic operators: Ê(r) = ∑n [En(r)ân + E∗n(r)â†

n] and B̂(r)
= ∑n [Bn(r)ân + B∗n(r)â†

n], together with the definition of the anni-
hilation operator, ân∣αn⟩ = αn∣αn⟩. In the derivation of the contribu-
tion given by the diamagnetic term, we have utilized the fact that all
the operators must be written in terms of normally ordered opera-
tors when evaluating coherent-state expectation values. To do so, we
use ânâ†

m = δnm + â†
mân.

The next step is to evaluate the multi-dimensional Gaus-
sian integral appearing in Eq. (A1). For this purpose, we
use the general formula ∫Rm exp (− 1

2 xT
⋅A ⋅ x + bT

⋅ x + c) dmx

=

√

det (2πA−1
) exp ( 1

2 bT
⋅A−1

⋅ b + c). This formula cannot be
directly applied to Eq. (A1); we must perform a change of vari-
ables to the real and imaginary parts of the complex eigen-
values αn: α′n = Reαn and α′′n = Imαn. Thus, Eq. (A1) can be
written as

exp (−βĤeff) =∏
n
(∫

dα′ndα′′n
π
) exp

⎧⎪⎪
⎨
⎪⎪⎩

−β
⎡
⎢
⎢
⎢
⎢
⎣

Ĥle +∑
n
∫ d3r∫ d3r′∑

i,γ ∈ i
Tr[Θ̂γ(r) × Bn(r)⊗ B∗n(r

′
) × Θ̂γ(r′)] +∑

n
h̵ωn(α′2n + α′′2n )

− 2∑
n
∑

i
∫ d3r{P̂i(r) ⋅ Re[En(r)] + M̂i(r) ⋅ Re[Bn(r)]}α′n + 2∑

n
∑

i
∫ d3r{P̂i(r) ⋅ Im[En(r)] + M̂i(r) ⋅ Im[Bn(r)]}α′′n

+ 2∑
nm
∫ d3r∫ d3r′∑

i,γ ∈ i
(Tr{Θ̂γ(r) × Re[Bn(r)⊗ Bm(r′) + Bn(r)⊗ B∗m(r

′
)] × Θ̂γ(r′)}α′nα′m
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+ Tr{Θ̂γ(r) × Re[−Bn(r)⊗ Bm(r′) + Bn(r)⊗ B∗m(r
′
)] × Θ̂γ(r′)}α′′n α′′m

− Tr{Θ̂γ(r) × Im[Bn(r)⊗ Bm(r′) − Bn(r)⊗ B∗m(r
′
)] × Θ̂γ(r′)}α′nα′′m

− Tr{Θ̂γ(r) × Im[Bn(r)⊗ Bm(r′) + Bn(r)⊗ B∗m(r
′
)] × Θ̂γ(r′)}α′′n α′m)

⎤
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪
⎬
⎪⎪⎭

. (A2)

This allows identifying

xT
= (α′1, α′′1 , α′2, α′′2 , . . .), (A3a)

bT
= 2β (L̂Re

1 ,−L̂Im
1 , L̂Re

2 ,−L̂Im
2 , . . .), (A3b)

c = −β
⎡
⎢
⎢
⎢
⎢
⎣

Ĥle +∑
n
∫ d3r∫ d3r′∑

i,γ ∈ i

× Tr[Θ̂γ(r) × Bn(r)⊗ B∗n(r
′
) × Θ̂γ(r′)]

⎤
⎥
⎥
⎥
⎥
⎦

, (A3c)

with L̂Re
n ≡ ∑i ∫d3r{P̂i(r) ⋅ Re[En(r)] + M̂i(r) ⋅ Re[Bn(r)]} and L̂Im

n

≡ ∑i ∫d3r{P̂i(r) ⋅ Im[En(r)] + M̂i(r) ⋅ Im[Bn(r)]}. The remaining
terms, namely, the bare EM energy and the diamagnetic contribu-
tion, are included in the matrix A. Due to the diamagnetic contri-
bution, the application of the general formula for multi-dimensional
Gaussian integrals yields terms of fourth order in the EM field. We

derive our effective Hamiltonian neglecting these high-order con-
tributions, such that A = 2β diag(h̵ω1, h̵ω1, h̵ω2, h̵ω2, . . .). Thus, the
effective Hamiltonian, up to second order in the EM field amplitude,
reads as

Ĥeff =
ˆ̃Hle −∑

n

⎡
⎢
⎢
⎢
⎢
⎣

(L̂ Re
n )

2
+ (L̂ Im

n )
2

h̵ωn

⎤
⎥
⎥
⎥
⎥
⎦

, (A4)

where we have defined the corrected low-energy matter Hamiltonian
as ˆ̃Hle = Ĥle + Ĥren, with

Ĥren = ∫ d3r∫ d3r′∑
i,γ ∈ i

Tr[Θ̂γ(r) ×Ω(r, r′) × Θ̂γ(r′)], (A5)

The diamagnetic field tensor is

Ω(r, r′) =∑
n

Re[Bn(r)⊗ B∗n(r
′
)]. (A6)

Notice that the imaginary part of the tensor Bn(r)⊗ B∗n(r′) does
not appear. It can be shown that Im[Bn(r)⊗ B∗n(r′)] does not
contribute in Eq. (A3c),

∫ d3r∫ d3r′Tr{Θ̂γ(r) × Im[Bn(r)⊗ B∗n(r
′
)] × Θ̂γ(r′)}

=
1
2i ∫

d3r∫ d3r′Tr{Θ̂γ(r) × [Bn(r)⊗ B∗n(r
′
) − B∗n(r)⊗ Bn(r′)] × Θ̂γ(r′)}

∝ ∫ d3r∫ d3r′∑
αβδμν
[εαβδεαμνΘ̂β

γ(r)Θ̂
μ
γ(r
′
)Bδ

n(r)B
ν ∗
n (r

′
)− εαβδεαμνΘ̂β

γ(r)Θ̂
μ
γ(r
′
)Bδ ∗

n (r)B
ν
n(r
′
)]

= ∫ d3r∫ d3r′∑
αβδμν
[εαβδεαμνΘ̂β

γ(r)Θ̂
μ
γ(r
′
)Bδ

n(r)B
ν ∗
n (r

′
)− εαμνεαβδΘ̂μ

γ(r
′
)Θ̂β

γ(r)B
ν
n(r
′
)Bδ ∗

n (r)], (A7)

where we have used the commutativity of the density oper-
ator Θ̂(r). Then, by interchanging r↔ r′, β↔ μ, and δ↔ ν, we
find

∫ d3r∫ d3r′Tr{Θ̂γ(r) × Im[Bn(r)⊗ B∗n(r
′
)] × Θ̂γ(r′)}

∝ ∫ d3r∫ d3r′∑
αβδμν
[εαβδεαμνΘ̂β

γ(r)Θ̂
μ
γ(r
′
)Bδ

n(r)B
ν ∗
n (r

′
)

− εαβδεαμνΘ̂β
γ(r)Θ̂

μ
γ(r
′
)Bδ

n(r)B
ν ∗
n (r

′
)] = 0. (A8)

By using the identity (∑i aiRebi)
2
+ (∑i aiImbi)

2

= ∑ij aia j(RebiReb j + ImbiImb j) = ∑ij aia jRe(bib∗j ), we write
the effective Hamiltonian in the way of Eq. (4),

Ĥeff =
ˆ̃Hle −∑

i,j
∫ d3r∫ d3r′[P̂i(r) ⋅ λee

(r, r′) ⋅ P̂j(r′)

+ P̂i(r) ⋅ λem
(r, r′) ⋅ M̂j(r′) + M̂i(r) ⋅ λme

(r, r′) ⋅ P̂j(r′)

+ M̂i(r) ⋅ λmm
(r, r′) ⋅ M̂j(r′)], (A9)
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with the effective couplings defined by

λee
(r, r′) =∑

n
Re[

En(r)⊗ E∗n(r′)
h̵ωn

], (A10a)

λem
(r, r′) =∑

n
Re[

En(r)⊗ B∗n(r′)
h̵ωn

], (A10b)

λme
(r, r′) =∑

n
Re[

Bn(r)⊗ E∗n(r′)
h̵ωn

], (A10c)

λmm
(r, r′) =∑

n
Re[

Bn(r)⊗ B∗n(r′)
h̵ωn

]. (A10d)

By introducing the relation Bn(r) = 1
iωn
∇× En(r) and con-

sidering the definitions of the left-, right-, and two-side curl, the
diamagnetic tensor field and the effective couplings take the final
form shown in the main text, Eqs. (6) and (7), respectively.

APPENDIX B: FREQUENCY BEHAVIOR OF THE
GREEN’S TENSOR

The summation over all the modes in the effective couplings
is performed using the macroscopic QED formalism. As shown in
the main text, the sums transform into integrals over the full real
frequency axis of functions of the EM Green’s tensor G(r, r′, ω). Par-
ticularly, these functions are [see Eq. (16)]: ωG(r, r′, ω) in λee

(r, r′),
G(r, r′, ω) ×←Ð∇r′ in λem

(r, r′), Ð→∇r ×G(r, r′, ω) in λme
(r, r′),

Ð→
∇r ×

1
ω G(r, r′, ω) ×←Ð∇r′ in λmm

(r, r′), and again, the same four
functions subject to the replacement G(r, r′, ω)→ GT

(r′, r, ω).
The Green’s tensor is a causal function, which means that it is

an analytic function in the upper half of the complex frequency plane
(Im ω > 0), with the only possibility of singularities on the real axis.
Thus, knowing the pole structure on the real axis and the asymp-
totic high frequency behavior of G(r, r′, ω) allows us to use contour
integration to perform the different integrals.

In order to determine the pole structure and high frequency
behavior of the Green’s tensor, we follow the procedure in Ref. 56
and start writing the nonlocal version of the Helmholtz differential
equation [Eq. (11)] in operator form

Ĥ(ω) ⋅ Ĝ(ω) = Î, (B1)

with Ĥ(ω) being the Helmholtz operator in general nonlocal and
nonreciprocal optical environments,52

Ĥ(ω) = −p̂ × μ̂−1
(ω) ⋅ p̂ × −

ω
c

ξ̂(ω) ⋅ μ̂−1
(ω) ⋅ p̂ × +

ω
c

p̂

× μ̂−1
(ω) ⋅ ζ̂(ω) −

ω2

c2 [ε̂(ω) − ξ̂(ω) ⋅ μ̂−1
(ω) ⋅ ζ̂(ω)],

(B2)

where ε(r, r′, ω) is its permittivity, μ(r, r′, ω) is its permeability,
and ξ(r, r′, ω) and ζ(r, r′, ω) are its cross-magnetoelectric suscepti-
bilities. Here, we used ⟨r∣Ô(ω)∣r′⟩ = O(r, r′, ω) for general tensors
O and defined the momentum operator ⟨r∣p̂∣r′⟩ = −iÐ→∇rδ(r − r′).
From now, we do not explicitly write the frequency dependence

of the operators for simplicity. Decomposing the formal solution
Ĝ = Ĥ−1 of Eq. (B1) using the longitudinal and transverse projection
operators, Î ∥ and Î�, we get56

Ĝ = Î ∥(Î ∥ĤÎ ∥)
−1

Î ∥ + [Î� − Î ∥(Î ∥ĤÎ ∥)
−1

Î ∥ĤÎ�]K̂

× [Î� − Î�ĤÎ ∥(Î ∥ĤÎ ∥)
−1

Î ∥], (B3)

where

K̂ = [Î�ĤÎ� − Î�ĤÎ ∥(Î ∥ĤÎ ∥)
−1

Î ∥ĤÎ�]
−1

. (B4)

Using that Î ∥(p̂ × Ô) = (Ô × p̂)Î ∥ = p̂ × Î ∥ = 0 for general Ô, we
find

Î ∥ĤÎ ∥ =
ω2

c2 Î ∥(ε̂ − ξ̂ ⋅ μ̂−1
⋅ ζ̂)Î ∥, (B5a)

Î ∥ĤÎ� = −
ω
c

Î ∥(ξ̂ ⋅ μ̂−1
⋅ p̂×)Î� −

ω2

c2 Î ∥(ε̂ − ξ̂ ⋅ μ̂−1
⋅ ζ̂)Î�, (B5b)

Î�ĤÎ ∥ =
ω
c

Î�(p̂ × μ̂−1
⋅ ζ̂)Î ∥ −

ω2

c2 Î�(ε̂ − ξ̂ ⋅ μ̂−1
⋅ ζ̂)Î ∥. (B5c)

The frequency properties of the Green’s tensor depend on
the frequency behavior of the linear response functions ε(r, r′, ω),
μ−1
(r, r′, ω), ξ(r, r′, ω), and ζ(r, r′, ω). They are all analytic in the

upper half of the complex plane and also well-behaved on the real
frequency axis (admit a Taylor expansion) at the position where the
polarizations and magnetizations are defined. This implies, together
with Eq. (B3), that the Green’s tensor is also analytic in the upper
complex frequency plane and on the real axis, except for a second
order pole at ω = 0 [stemming from the purely longitudinal part in
Eq. (B3), see Eq. (B5a)]. We further find

lim
ω→0

ω2G(r, r′, ω) = lim
ω→0

ω2∥G∥(r, r′, ω) <∞, (B6a)

lim
ω→0

ωG�(r, r′, ω) = lim
ω→0

ω∥G�(r, r′, ω), (B6b)

=
d

dω
ω2G�(r, r′, ω)∣ω=0 <∞, (B6c)

lim
ω→0

ω�G(r, r′, ω) = lim
ω→0

ω�G∥(r, r′, ω), (B6d)

=
d

dω
ω2�G(r, r′, ω)∣ω=0 <∞, (B6e)

lim
ω→0

�G�(r, r′, ω) =
1
2

d2

dω2 ω2�G�(r, r′, ω)∣ω=0 <∞. (B6f)

Here, <∞ implies that the expressions remain finite, and in
Eqs. (B6c), (B6e), and (B6f), we used that ω2G(r, r′, ω) can be Tay-
lor expanded around ω = 0. Equation (B6) shows that ωG(r, r′, ω),
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Ð→
∇r ×G(r, r′, ω), G(r, r′, ω) ×←Ð∇r′ , and Ð→∇r × [G(r, r′, ω)/ω] ×←Ð∇r′

all have a first order pole at ω = 0.
In the high-frequency limit (∣ω∣→∞), the medium becomes

transparent so that ε̂→ Î, κ̂ → Î, ζ̂ → 0, and ξ̂ → 0. In addition, using
that Î�Î ∥ = Î ∥Î� = 0, we find from Eq. (B3),

lim
∣ω∣→∞

ω2

c2 Ĝ = −Î. (B7)

The above-mentioned considerations show that all the inte-
grands χ(ω) are causal functions with simple poles at ω = 0. The
integrals can thus be computed by constructing a semicircumfer-
ence contour C in the upper half of the complex plane (see Fig. 1).
The analyticity of χ(ω) in the upper half of the complex plane
implies

∮
C

dω χ(ω) = 0. (B8)

By splitting the contour C as C = [−ρ,−η] ∪ −Cη ∪ [η, ρ] ∪ Cρ and
taking the limit ρ→∞ and η→ 0, Eq. (B8) can be written as

∫

∞

−∞
dω χ(ω) = iπRes[χ(ω)]ω=0 − i lim

∣ω∣→∞
∫

π

0
dϕ ω χ(ω), (B9)

where Res[χ(ω)]ω=0 is the residue of χ(ω) at ω = 0 and we substi-
tuted ω = ∣ω∣eiϕ in the last term. We can use this general formula
together with Eqs. (B6) and (B7) to compute the four integrals in
Eq. (16),

∫

∞

−∞
dω ωG(r, r′, ω) = iπ lim

ω→0
ω2G(r, r′, ω) − iπ lim

∣ω∣→∞
ω2G(r, r′, ω)

= iπ lim
ω→0

ω2G(r, r′, ω) + iπc2δ(r − r′),

(B10a)

∫

∞

−∞
dω G(r, r′, ω) ×←Ð∇r′ = iπ [

d
dω

ω2G(r, r′, ω) ×←Ð∇r′]
ω=0

,

(B10b)

∫

∞

−∞
dω Ð→∇r ×G(r, r′, ω) = iπ [Ð→∇r × lim

ω→0

d
dω

ω2G(r, r′, ω)]
ω=0

,

(B10c)

FIG. 1. Contour of integration C = [−ρ,−η] ∪ −Cη ∪ [η, ρ] ∪ Cρ for a causal
function χ(ω) with a simple pole at ω = 0.

∫

∞

−∞
dω Ð→∇r ×

1
ω

G(r, r′, ω) ×←Ð∇r′

=
iπ
2
[
Ð→
∇r ×

d2

dω2 ω2G(r, r′, ω) ×←Ð∇r′]
ω=0

. (B10d)

Using these integrals in Eq. (16), we recover the final expression
for the effective couplings in Eq. (19).
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ing, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B.
Littlewood, B. Deveaud, and L. S. Dang, “Bose-Einstein condensation of exciton
polaritons,” Nature 443, 409 (2006).
9K. S. Daskalakis, S. A. Maier, R. Murray, and S. Kéna-Cohen, “Nonlinear
interactions in an organic polariton condensate,” Nat. Mater. 13, 271 (2014).
10M. Ramezani, A. Halpin, A. I. Fernández-Domínguez, J. Feist, S. R.-K.
Rodriguez, F. J. Garcia-Vidal, and J. Gómez Rivas, “Plasmon-exciton-polariton
lasing,” Optica 4, 31 (2017).
11J. A. Hutchison, T. Schwartz, C. Genet, E. Devaux, and T. W. Ebbesen,
“Modifying chemical landscapes by coupling to vacuum fields,” Angew. Chem.,
Int. Ed. 51, 1592 (2012).
12K. Nagarajan, A. Thomas, and T. W. Ebbesen, “Chemistry under vibrational
strong coupling,” J. Am. Chem. Soc. 143, 16877–16889 (2021).
13J. Feist and F. J. Garcia-Vidal, “Extraordinary exciton conductance induced by
strong coupling,” Phys. Rev. Lett. 114, 196402 (2015).
14J. Schachenmayer, C. Genes, E. Tignone, and G. Pupillo, “Cavity-enhanced
transport of excitons,” Phys. Rev. Lett. 114, 196403 (2015).
15G. Lerario, D. Ballarini, A. Fieramosca, A. Cannavale, A. Genco, F. Mangione, S.
Gambino, L. Dominici, M. De Giorgi, G. Gigli, and D. Sanvitto, “High-speed flow
of interacting organic polaritons,” Light: Sci. Appl. 6, e16212 (2016).
16S. Hou, M. Khatoniar, K. Ding, Y. Qu, A. Napolov, V. M. Menon, and S. R.
Forrest, “Ultralong-range energy transport in a disordered organic semiconductor
at room temperature via coherent exciton-polariton propagation,” Adv. Mater. 32,
2002127 (2020).
17D. M. Coles, N. Somaschi, P. Michetti, C. Clark, P. G. Lagoudakis, P. G. Savvidis,
and D. G. Lidzey, “Polariton-mediated energy transfer between organic dyes in a
strongly coupled optical microcavity,” Nat. Mater. 13, 712 (2014).
18G. Groenhof, C. Climent, J. Feist, D. Morozov, and J. J. Toppari, “Tracking
polariton relaxation with multiscale molecular dynamics simulations,” J. Phys.
Chem. Lett. 10, 5476 (2019).
19C. A. Downing, T. J. Sturges, G. Weick, M. Stobińska, and L. Martín-Moreno,
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