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ABSTRACT
The ability to control chemical reactions by coupling organic molecules to confined light in a cavity has recently attracted much attention.
While most previous studies have focused on single-mode photonic or plasmonic cavities, here we investigate the effect of hybrid met-
allodielectric cavities on photoisomerization reactions. Hybrid cavities, which support both photonic and plasmonic modes, offer unique
opportunities that arise from the interplay between these two distinct types of modes. In particular, we demonstrate that interference in the
spectral density due to a narrow photonic mode and a broad plasmonic mode that are coupled to each other enables hybrid cavities to provide
an energy-selective Purcell effect. This effect enhances electronic relaxation only to the desired molecular geometry, providing the ability
to increase the yield of photoisomerization reactions. As a test case, we study the asymmetric proton transfer reaction in the electronically
excited state of 3-aminoacrolein. Our results, which are robust for a range of realistic cavity parameters, highlight the advantages of hybrid
cavities in cavity-induced photochemical processes.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0252988

I. INTRODUCTION

The coupling of organic molecules to confined light in a cav-
ity and the formation of hybrid light–matter states, known as
polaritons, enable the manipulation of both light and matter. In
the past decade, their potential to tailor chemical reactions,1–6

energy transport,7–9 lasing,10–12 and photon non-linearities13 has
been extensively studied. However, conventional photonic cavi-
ties, such as Fabry–Pérot resonators,14 primarily enable collective
light–matter coupling involving many molecules.15 This delocalized
coupling limits their ability to influence properties at the level of
individual molecules.16,17 In contrast, plasmonic nanocavities over-
come this limitation by providing extreme sub-wavelength confine-
ment, enabling significant single-molecule coupling strengths, and

offering a promising platform for controlling individual molecular
properties.18–25

Recently, several studies26–29 have shown that the coupling of a
molecular electronic excitation to a plasmonic mode, which features
high loss due to metal absorption, can tailor molecular photore-
laxation and, thus, affect the molecular structure and dynamics.
This phenomenon is attributed to the Purcell effect,30–34 wherein
the cavity accelerates the molecular spontaneous emission rate by
facilitating higher coupling to the free-space electromagnetic envi-
ronment, as determined by the loss rate of the cavity. Thus, the
Purcell effect, leveraging the high loss of the plasmonic mode, does
not require the system to be in the strong coupling regime, where
the light–matter coupling strength matches or exceeds the individ-
ual relaxation rates of the cavity and molecular excitation, but occurs
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in the weak coupling regime. This makes Purcell-induced reactions
more feasible for experimental realization.

In contrast to many previous studies that have focused on one-
mode plasmonic cavities,26–29 here we investigate the effect of a
hybrid metallodielectric cavity, which involves both plasmonic and
photonic modes. These (at least) two-mode cavities have gained
significant theoretical35–39 and experimental40–43 interest in recent
years, as they combine the low-loss properties of photonic micro-
cavities with the highly localized fields of plasmonic modes, enabling
novel functionalities. In this work, we explore their impact on
the Purcell-induced photoisomerization reaction. In general, pho-
toisomerization44 is a process in which a molecule absorbs light,
promoting it to an excited electronic state, followed by isomer-
ization to a different geometric configuration, and a subsequent
relaxation back to the ground state. Such a relaxation can either
happen via conical intersection on the sub-picosecond timescale45

or via spontaneous decay on a nanosecond timescale.44 However,
the spontaneous emission rate can be significantly accelerated via
the Purcell effect by coupling the electronic transition to the cavity
modes. Moreover, by selectively enhancing the decay rate to favor
one geometry over another, the yield of the photoisomerization reac-
tion can be increased. This selectivity is achieved through the energy
selectivity of the cavity.

We propose that hybrid cavities provide a more energy-
selective Purcell effect than single-mode cavities, enhancing the
geometric selectivity of relaxation from the excited state and increas-
ing the yield of photoisomerization reactions. As an illustrative case
study, we investigate 3-aminoacrolein,46 a model system for asym-
metric proton transfer reactions in an excited electronic state. This
model reaction, which demands high energy selectivity, highlights
the advantages of hybrid cavities in controlling photoisomerization
at the single-molecule level. The remainder of this paper is orga-
nized as follows: In Sec. II, we present the theoretical foundation
of our work, explaining why hybrid cavities offer enhanced energy
selectivity and detailing how the photoisomerization reaction can
be theoretically studied, including an expression for the rate con-
stant of cavity-mediated population transfer. Section III introduces
the molecular case study, describing the computational methodol-
ogy and the selected cavity parameters. In Sec. IV, we present the
results that demonstrate the impact of the hybrid cavity on pho-
toisomerization dynamics. Finally, in Sec. V, we summarize our
findings.

II. THEORY
A. Multimode Purcell enhancement

The Purcell enhancement is determined in the weak coupling
regime by the spectral density of the electromagnetic modes of the
cavity, J(ω), at the transition frequency ω, where a higher spectral
density corresponds to a stronger interaction with the cavity and,
thus, a faster relaxation.47 The energy gap between the electronic
excited state and the electronic ground state dictates the transition
frequency of the molecular excitation, given by Ve(X) − V g(X),
where V g(X) and Ve(X) are the potential energy surfaces of the
ground and excited states as a function of the reaction coordinate
X. Thus, when J(ω) varies strongly with ω, it provides a high selec-
tivity in the spectral domain, which allows the possibility of selective
coupling to certain regions on the potential energy surfaces, e.g., a

specific molecular geometry. As a result, Purcell enhancement can
favor specific relaxation pathways, thus influencing isomerization
dynamics.

Achieving both strong Purcell enhancement and energy selec-
tivity in single-mode cavities can be challenging. The spectral den-
sity of a single cavity mode can be characterized by a Lorentzian
function,48,49

J1 mode(ω) =
g2κ

2π[(ωc − ω)2
+ κ2
/4]

, (1)

where the linewidth κ represents the decay rate of the cavity mode.
Here, ωc is the frequency of the cavity mode, and g is its coupling
strength to the molecule. Typically, a larger g is associated with a
larger κ,19–22 implying that a higher Purcell enhancement comes
at the cost of broader spectral density, which reduces selectivity.
Furthermore, the molecular enhanced decay is limited to half the
cavity’s loss rate, κ/2, emphasizing the importance of a high κ for
achieving strong Purcell enhancement.50

Consequently, we propose using a hybrid metallodielectric cav-
ity setup, sketched in Fig. 1, which combines two electromagnetic
modes: one plasmonic and one photonic, to achieve both high
Purcell enhancement and energy selectivity. The plasmonic mode
provides significant coupling to the molecule, while selectivity is
achieved through interference between the two modes. The spectral
density of this hybrid cavity can be described as49

J2 mode(ω) =
1
π

Im{g⃗ T 1
H2 mode − ω

g⃗}, (2)

where g⃗ = {g1, g2} and

H2 mode =

⎛
⎜
⎜
⎝

ω1 −
i
2

κ1 d

d ω2 −
i
2

κ2

⎞
⎟
⎟
⎠

. (3)

Here, ω1 and ω2 are the frequencies of the photonic and plas-
monic modes, respectively; κ1 and κ2 are their decay rates; g1 and
g2 represent their coupling strengths to the molecule; and d is the
coupling between the two modes originating from the interaction
between the electric field of the photonic mode and the plasmonic
dipole moment. For d = 0, the spectral density reduces to the sum
of two Lorentzians. However, for non-zero d, asymmetric line-
shapes emerge. In the regime relevant to hybrid cavities, where the
coupling strength and decay rate of the photonic mode are signifi-
cantly smaller than those of the plasmonic mode,51 that is, κ2 ≫ κ1
and g2 ≫ g1, the spectral density features two asymmetric peaks

FIG. 1. Scheme of the hybrid metallodielectric cavity setup combining a
Fabry–Pérot photonic mode with a plasmonic mode and interacting with a matter
excitation described by a two-level system.
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with the same amplitudes but different widths and a dip between
them. In particular, when g1 = 0 and κ1 = 0, the spectral density
simplifies to

J2 mode(ω) =
g2

2 κ2

2π[(ω2 −
d2

ω1−ω − ω)
2
+

κ2
2

4 ]

(4)

for ω ≠ ω1, featuring two maxima when ω2 −
d2

ω1−ω − ω = 0, and is
zero at ω = ω1. By selecting appropriate values for ω1, ω2, κ2, g2, and
d, we engineer one of the spectral density peaks to be very narrow,
allowing for highly energy-selective Purcell enhancement at the right
frequency.

B. The rate constant for cavity-mediated population
transfer

We study the Purcell-induced photoisomerization reaction
by solving a set of rate equations that describe the population
transfer between different vibrational states, representing differ-
ent molecular isomers, in the molecular electronic ground state.
These states are given by the eigenfunctions ∣Φn⟩ of Ĥg = T̂ + Vg(X),
the nuclear Hamiltonian in the electronic ground state within the
Born–Oppenheimer approximation, where T̂ is the kinetic energy
operator along the reaction coordinate X. The transfer of pop-
ulation from ∣Φi⟩ to ∣Φ f ⟩, mediated by excitation to the elec-
tronic excited state and decay through cavity losses, is a second-
order process. Therefore, its rate constant kESPT

i→ f is given by the
Kramers–Heisenberg formula.52 We use its non-Hermitian (NH)
form53–55 in order to account for cavity losses and the spontaneous
decay rate of the molecule, Γ.

The hybrid cavity coupled to a molecular electronic excitation
corresponds to the following NH Hamiltonian:

Ĥ0 = Ĥg + (Ĥe − Ĥg − i
Γ
2
)σ+σ− + ∑

n=1,2
[ω̃na†

nan

+ gnD(X)(σ+an + a†
nσ−)] + d(a†

1a2 + a†
2a1), (5)

where the rotating-wave approximation is applied. This Hamilto-
nian is the effective NH Hamiltonian56 arising from the Lindblad
master equation,47,57 which is commonly used to describe lossy
systems. Here, σ− (σ+) and an (a†

n) denote the annihilation (cre-
ation) operators of the molecular exciton and the two optical modes,
respectively; Ĥe = T̂ + Ve(X) is the nuclear Hamiltonian in the
excited electronic state; ω̃n = ωn − i κn

2 are the complex energies of the
cavity modes; and D(X) is the geometry-dependent transition dipole
moment between the ground and the excited electronic states. The
initial and final states of the population transfer correspond to the
eigenstates of the zeroth optical excitation of Ĥ0. In these states, the
cavity modes are in their corresponding vacuum state ∣0⟩. They are
given by ∣i⟩ = ∣Φi⟩⊗ ∣0⟩ = ∣Φi, 0⟩ and ∣ f⟩ = ∣Φ f ⟩⊗ ∣0⟩ = ∣Φ f , 0⟩ with
the eigenenergies Ei and E f . However, the states that mediate pop-
ulation transfer correspond to the first optical excitation manifold
of Ĥ0 and are hybrid light–matter states, which we here will denote
generically as polaritons without distinguishing between weak and
strong coupling regimes. While the zeroth optical excitation of Ĥ0
is described by a Hermitian Hamiltonian, its first optically excited
manifold is given by an NH Hamiltonian due to the difference in

decay rate between the cavity modes (κ1, κ2) and the emitter (Γ).
Therefore, to emphasize their different inner products,58 the nota-
tion ∣r) and (r∣ is used, rather than ∣r⟩ and ⟨r∣, for the right and left
eigenstates of the first optical excitation manifold of Ĥ0. Since Ĥ0
is complex symmetric, ∣r) is the same as ∣r⟩, while (r∣ is the com-
plex conjugate of ⟨r∣. Moreover, these eigenstates are associated with
complex eigenvalues Ẽr .58

The rate constant kESPT
i→ f for the population transfer mediated by

laser excitation and subsequent decay is then given by

kESPT
i→ f =∑

k

RRRRRRRRRRR

∑
r

⟨0, Φ f ∣V̂
(k)
d ∣r)(r∣ΩD(X)σ+∣Φi, 0⟩

Ẽ r − Ei − h̵ωL

RRRRRRRRRRR

2

, (6)

where the index k sums over all possible decay channels. The matrix
element (r∣ΩD(X)σ+∣Φi, 0⟩ describes the laser excitation of the ini-
tial state into the first optical excitation manifold of Ĥ0 through
the molecular transition dipole D(x) where Ω is the laser’s field
strength, and the denominator of Eq. (6), which does not diverge
due to the complex value of Ẽr , describes the energy match with the
laser frequency, ωL. In addition, the matrix element ⟨0, Φ f ∣V̂

(k)
d ∣r)

describes the subsequent relaxation from the optically excited man-
ifold to the final state through the channel k. Following Refs. 53–55,
we use

√
Γσ− for the spontaneous emission of the molecule, and

√
κ1a1 and

√
κ2a2 for the two cavity losses as decay operators

V̂(k)d . The derivation of Eq. (6) with these decay operators from the
Lindblad master equation using perturbation theory is presented in
the Appendix.

In Eq. (6), two roles for the cavity setup are taken into account.
First, the decay rate from the optically excited manifold to the elec-
tronic ground state is enhanced by opening additional decay chan-
nels beyond molecular spontaneous emission. Second, the eigen-
states in the optically excited manifold of Ĥ0 are modified due to
the formation of polaritons. If these polaritonic effects are neglected,
the rate constant simplifies to

kESPT(nonP)
i→ f = ∣∑

e

√γef ⟨Φ f ∣D(X)∣ϕe⟩⟨ϕe∣ΩD(X)∣Φi⟩

Ee − iΓ/2 − Ei − h̵ωL
∣

2

. (7)

Here, we assume that only the eigenstates of Ĥe, ∣ϕe⟩, with eigen-
values Ee, and not the polaritons ∣r), which are the eigenstates of
the first optical excitation manifold of Ĥ0, mediate the population
transfer. In this case, the effect of the cavity setup on the decay to
the electronic ground state is implicit and treated perturbatively,47

assuming that the cavity setup can be described as a Markovian
bath weakly coupled to the molecular excitation. As a result, the
cavity-enhanced decay from ∣ϕe⟩ to ∣Φ f ⟩ is given by the matrix
element ⟨Φ f ∣D(X)∣ϕe⟩ of the molecular transition dipole through
which the cavity is coupled, multiplied by the square root of the rate
γef = 2πJ(Ee − E f ), where J(ω) is the spectral density of the cavity
setup. When valid, Eq. (7) allows the calculation of cavity-mediated
population transfer without explicitly considering the cavity degrees
of freedom, simplifying the treatment of multiple modes. The laser
excitation in Eq. (7) is treated similarly to Eq. (6), using the molec-
ular transition dipole. The molecular spontaneous decay rate Γ is
used to broaden the electronic excited states, preventing divergence
of Eq. (7).
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C. The molecular steady state
Our description of the dynamics of the cavity molecular system

is based on coupled rate equations. To determine the rate constants
kESPT

i→ f , we assign the rate equation to each vibrational state in the
molecular electronic ground state,

dPn(t)
dt

=∑
m≠n

ktot
m→nPm(t) − Pn(t)∑

m≠n
ktot

n→m, (8)

where Pn(t) is the population in the state Φn, and ktot
m→n is the

total rate constant for population transfer from the state Φm to
state Φn, summing the rate constant kESPT

m→n derived above with the
vibrational relaxation rate constant kVR

m→n. The last accounts for
the effect of the nuclear degrees of freedom neglected when com-
puting kESPT

m→n considering the reduced reaction coordinate and is
given by

kVR
m→n = γ0∣⟨Φn∣X∣Φm⟩∣

2 (9)

for Em > En, while it is zero for Em < En. The matrix element
⟨Φn∣X∣Φm⟩ describes the transition dipole between the two states
and γ0 =

1
ps . We find the photostationary state of this setup by locat-

ing the populations Pn(t →∞) for which dPn(t→∞)
dt = 0 for some n

and which obey ∑nPn(t →∞) = 1. By determining which state is
associated with each isomer of the molecule, the photoisomerization
process can be studied.

III. THE MOLECULAR CASE STUDY
As a case study, we consider the asymmetric proton transfer

reaction between the nitrogen atom and the oxygen atom in the
second electronic excited state S2 of (Z)-3-aminoacrylaldehyde.46

The chosen molecular model represents an asymmetric vari-
ant of the well-studied symmetric proton transfer in (Z)-
malondialdehyde.59–61 The reaction of (Z)-3-aminoacrylaldehyde
can be well approximated in a lower-dimensional subspace.61–63

Both minimum structures (depicted in Fig. 2) and the transition
state of the proton transfer reaction and the corresponding intrinsic
reaction coordinate (IRC) were calculated in the electronic ground
state S0 at the ωB97XD/aug-CC-PVDZ64,65 level of theory using
the Gaussian 16 Rev.C.01 program package.66 The potential energy
curves for the optically accessible S2 state and the corresponding
transition dipole moment are obtained using linear-response time-
dependent density functional theory within the Tamm–Dancoff
approximation67 with ten roots. All electronic structure calculations
were performed in a reproducible environment using the Nix pack-
age manager together with NixOS-QChem68 (commit f803c222) and
Nixpkgs (nixpkgs, 23.05, commit 5550a85a). The last point of the
IRC in both directions and the corresponding minima were used to
extrapolate the potential energy curve to obtain a bound potential
for S2 and S0. These potentials are plotted in the lower panel of Fig. 2
as a function of the reaction coordinate X defined by the IRC, which
describes the proton transfer reaction between nitrogen and oxygen
atoms. The kinetic energy operator along the reaction coordinate X
is constructed within the G-matrix formalism,69–71 as described in
Ref. 72. It reads

T̂ ≈ −
h̵2

2
∂

∂X
G(X)

∂

∂X
(10)

FIG. 2. Lower panel—the potential energy curves of the electronic ground (S0)
and second excited (S2) states of (Z)-3-aminoacrylaldehyde as a function of the
proton transfer reaction coordinate X defined by the IRC (see the main text). The
vibrational wavefunctions associated with the ground state of each isomer are also
plotted. Middle and upper panels—the excitation energy and the transition dipole
between these two electronic states as a function of X .

with the G-matrix element G(X) being computed via finite differ-
ences by displacement of the Cartesian molecular geometry along
the internal coordinate. The vibrational states for the electronic
ground state (S0) and the excited state (S2) along X, correspond-
ing to the eigenstates of Ĥg and Ĥe [in Eq. (5)], were deter-
mined using the discrete variable representation (DVR) method
and the one-dimensional particle-in-a-box basis functions. The cho-
sen parameters, for which we obtain converged results, are as
follows: box length L = 6 a.u., and the number of basis functions
n = 100. The vibrational ground state in S0, Φ0(X), presented in
the lower panel of Fig. 2, is localized in the left well. After the
molecule has been excited to the second excited electronic state,
the excited-state wave packet can propagate between the left and
right wells of the S2 potential curve. The subsequent decay back
to the ground electronic state S0 can give rise to the product of
the proton transfer reaction as the right well in the S0 potential
curve is populated. In particular, we are interested in transferring
the population to the fourth vibrational state in S0, Φ4(X), which
is localized mostly in the right well, as is also shown in the lower
panel of Fig. 2.

The enhancement of population transfer to Φ4(X) by cou-
pling the molecular excitation S0 → S2 to a cavity setup requires high
energy selectivity, since both the excitation energy, given by the dif-
ference between the two potentials ΔE(X) = VS2(X) − VS0(X) (mid-
dle panel of Fig. 2), and the electronic transition dipole D(X) (upper
panel of Fig. 2), are similar between the two nuclear configurations.
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TABLE I. Optimization of the cavities’ parameters to achieve the highest steady-state
population in Φ4(X) for the intracavity laser strength Ω = 10−5. The optimal values
for the two-mode cavity are given in the first column, and for the one-mode cavity,
they are given in the second column.

Two-mode optimal (eV) One-mode optimal (eV)

ω1 5.351 ⋅ ⋅ ⋅

ω2 6.816 5.276
κ2 0.335 0.448
g2 0.046 0.019
d 0.164 ⋅ ⋅ ⋅

Thus, it fits the purpose of demonstrating the benefits of the hybrid
metallodielectric cavity in enhancing photoisomerization reactions.
The laser frequency used matches the highest Franck–Condon fac-
tor corresponding to ωL = E0,e − E0,g = 5.254 eV, where E0,e/g are the
lowest vibrational eigenvalues of the two electronic states. In addi-
tion, we consider Γ = 10−7 a.u. = 4 ns−1 as the rate of spontaneous
decay of the molecule. For simplicity, we set the coupling strength
and decay rate of the photonic mode to g1 = 0 and κ1 = 0. The
robustness of the results over a wide range of physically relevant val-
ues for g1 and κ1 is demonstrated in Fig. 7. The other parameters
of the hybrid cavity, ω1, ω2, κ2, g2, and d, are chosen using the con-
strained nonlinear optimization algorithm of MATLAB R2024a by
looking for a maximum value of P4 where Ω = 10−5 a.u. = 5.142 V

μm .
It is important to note that the intracavity electric field for a given
incoming laser field is enhanced relative to free space.73 To compen-
sate for this and focus solely on the cavity’s effect in accelerating and
tailoring the spontaneous emission relevant to the photoisomeriza-
tion reaction, we parameterize the system in terms of the effective
intracavity electric field strength Ω that the molecule feels, instead of
the original free-space laser field strength. The optimized values are
summarized in Table I and are feasible in accordance with the exist-
ing literature. Although we keep the plasmonic coupling strength
g2 within the weak coupling regime and up to 100 meV as realized
in Refs. 19–22, the coupling between the modes d can be strong.74

In addition, a high plasmonic decay rate equivalent to 0.5 eV was
calculated for an aluminum sphere.28 For comparison, we also opti-
mize the results for a one-mode cavity, whose only parameters are
ω2, κ2, and g2, and their optimized values are given in the second
column of Table I.

IV. RESULTS AND DISCUSSION
The steady-state population of Φ4(X), P4, is presented in Fig. 3

as a function of the intracavity laser strength Ω for both the opti-
mized hybrid (two-mode) and one-mode cavity setups. For com-
parison, we also show the case without any cavity coupling, where
the spontaneous emission of the molecule solely governs the decay
from the electronically excited state. The dependence of P4 on Ω
reflects the interplay between the timescales of population trans-
fer via the electronic excited state and the vibrational relaxation.
The latter is fixed at 1 picosecond in our calculations and remains
independent of Ω. For very small Ω, vibrational relaxation domi-
nates the dynamics, leading to a localization of the population in
the vibronic ground state, with P4 → 0. As Ω increases, the transfer

FIG. 3. Photo steady-state population of the vibrational state Φ4 in the electronic
ground state (S0), P4, as a function of the intracavity laser field strength Ω for
a setup of no cavity, one-mode cavity, and two-mode cavity. The parameters of
the cavities were optimized to achieve a high population when Ω = 10−5 a.u.,
as described in the main text. The results obtained when neglecting the coupling
between the two modes d and when considering only the non-polaritonic effect of
the two-mode cavity [Eq. (7)] are also presented.

of population via the electronic excited state becomes more signif-
icant, facilitating the population of Φ4(X) and increasing P4. For
sufficiently large Ω, P4 reaches a maximal constant value, indicating
that the rate of population transfer through the electronic excited
state exceeds the vibrational relaxation rate. Comparing the results
of the one-mode cavity and the two-mode cavity with the cavity-
free case shows that the cavities accelerate population transfer to
Φ4(X), as they enable maximal population at lower Ω values than in
the cavity-free setup. This acceleration arises from the Purcell effect,
which enhances the spontaneous emission from S2 to S0. However,
while the one-mode cavity achieves a maximal value of P4 of ∼70%,
similar to the cavity-free setup, the two-mode cavity increases this
value to greater than 90%. This enhancement highlights the selec-
tive effect of the hybrid cavity, as analyzed through the spectral
densities below.

The spectral densities for the one-mode and two-mode cav-
ity setups, J1mode(ω) and J2mode(ω), are shown in Fig. 4 and are
given by Eqs. (1) and (4), respectively. J1mode(ω) exhibits a broad
peak, whereas J2mode(ω) features a narrower and asymmetric peak
in the relevant frequency range for spontaneous emission from S2
to S0. This difference in peak linewidths indicates that the hybrid
cavity offers a higher energy selectivity, which selectively enhances
the decay from S2 to Φ4(X). In the Markovian and weak-coupling
regime, where the population in cavity modes is negligible, the
effect of the cavities can be treated perturbatively. Consequently,
the Purcell-enhanced spontaneous decay rate depends on the value
of the spectral density at the transition frequency, as taken into
account in Eq. (7). We present in Fig. 3 in dotted lines the popu-
lation P4 obtained when replacing kESPT

i→ f [Eq. (6)] with kESPT(nonP)
i→ f

[Eq. (7)] for the two cavity setups. For the one-mode cavity,
whose coupling strength is smaller than that of the two-mode
cavity, this approximate calculation reproduces the full calcula-
tion, while for the two-mode cavity, it does not, showing energy
exchange between the molecule and cavity modes in the hybrid
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FIG. 4. Spectral densities of the one-mode and two-mode cavities corresponding
to the results presented in Fig. 3. The vertical dashed lines indicate the energy
gaps between different transitions and demonstrate the high selectivity achieved
by the two-mode cavities.

setup. Importantly, the approximate calculation still predicts higher
P4 for the two-mode cavity than for the one-mode cavity. This
reveals a strong connection between the line shape of the spec-
tral density and the enhancement of the population, strengthening
the interpretation that the increased population transfer to Φ4(X)
in the hybrid cavity setup indeed stems from its superior energy
selectivity.

The narrow peak of J2mode, which results in the high energy
selectivity of the hybrid cavity, arises from the interference between
the two modes due to their non-zero coupling, d, as discussed in
Sec. II. In Fig. 3, the results for the two-mode cavity with d = 0
are shown in a dashed line, where the corresponding spectral den-
sity is plotted in Fig. 4 (also in a dashed line). Since g1 = 0, this
spectral density fits that of a one-mode cavity characterized by the
parameters of the plasmonic mode, which is far detuned from the
molecular excitation energies (Fig. 4). Consequently, this spectral
density remains approximately constant in the relevant energy range
for spontaneous emission from S2 to S0, leading to an unselec-
tive acceleration of emission and no increase in the asymptote of
P4 compared to the cavity-free case (Fig. 3). To further investigate
the role of d and to highlight the importance of energy selectiv-
ity of the hybrid cavity setup in the enhancement of excited-state
mediated population transfer, we compare the rate constants of
the competing transitions, kESPT

3→2 , kESPT
5→3 , and kESPT

5→4 , as functions of d
in Fig. 5. The vertical dotted lines in Fig. 4 indicate the emission
frequencies of these competing transitions, given by Ei + ωL − E f ,
where Ei and E f are the energies of the initial and final states,
respectively, and ωL is the laser frequency. Since these frequen-
cies are very similar, the one-mode cavity and the setup for d = 0
enhance these transitions unselectively, leading to the second high-
est populated state being Φ2(X) due to the transitions 5→ 3→ 2.
In contrast, the two-mode cavity selectively accelerates the tran-
sition 5→ 4 while suppressing the transitions 5→ 3→ 2, thereby
enhancing P4 by carefully choosing d, ω1, and ω2 to tune the nar-
row peak’s frequency [as determined from Eq. (4)]. This high energy
selectivity is demonstrated in Fig. 5, which shows that varying d, and
thus varying the frequency corresponding to the maximum of the

FIG. 5. Rate constants of competing transitions as a function of the coupling
between the two modes d. The largest value for population P4 is obtained for
dopt, as shown in the inset.

narrow peak in J2mode, results in different transitions being acceler-
ated. Note that higher values of d correspond to lower frequencies
for the narrow peak, which means that the maximal value of kESPT

3→2
whose transition energy exceeds that of kESPT

5→4 is obtained at smaller
values of d.

According to Eq. (4), the parameters d, ωL, ω1, and ω2 deter-
mine the position of the maximum of J2mode(ω) and are, therefore,
responsible for achieving the required energy selectivity for popula-
tion transfer to Φ4(X). This is demonstrated in Fig. 5 for variation
in d. In contrast, the parameters g2 and κ2 dictate the ampli-
tude of J2mode(ω). In particular, J2mode(ω) scales linearly with g2
for all ω, while its scaling with κ2 is inversely proportional when
∣ω2 −

d2

ω1−ω − ω∣≪ κ2/2 and linear when ∣ω2 −
d2

ω1−ω − ω∣≫ κ2/2. In
Fig. 6, we present the minimal intracavity laser field strength Ωmin

required for P4 > 0.9 as a function of g2 when κ2 = κopt
2 by the pur-

ple line and as a function of κ2 when g2 = gopt
2 by the light green

line. The parameters gopt
2 and κopt

2 were optimized to achieve the
largest value for P4 for the two-mode cavity setup and are given
in Table I. Although the maximum value of P4 remains relatively
insensitive to variations in g2 or in κ2, it varies with Ωmin, i.e., the
minimum laser power required to ensure that population transfer
via the electronic excited state overcomes vibrational relaxation. For
a low amplitude of J2mode(ω), the acceleration of spontaneous emis-
sion by the cavity is weaker, necessitating a stronger laser to achieve
maximal P4. However, if the amplitudes become too high, the spec-
tral density description of the cavity-enhanced decay rate becomes
invalid. Thus, Fig. 6 indicates that there exists an optimal range
for g2 and κ2 where population transfer via the excited state occurs
most rapidly.

Finally, we discuss the effects of the photonic mode’s para-
meters. While its coupling strength g1 and its decay rate κ1 are
both set to 0 in Figs. 3–6, we present P4 in Fig. 7 as a function of
κ1 and g1 for Ω = 10−5 a.u. As shown, the enhanced energy trans-
fer in the hybrid cavity remains robust across a wide range of κ1

and g1. Only when g1 reaches gopt
2 /10 and κ1 reaches κopt

2 /100, the
enhancement of population transfer to Φ4(X) in the two-mode
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FIG. 6. Minimal intracavity laser field strength Ωmin for which P4 > 0.9 as a function
of the plasmonic decay rate κ2 and as a function of the plasmonic coupling strength
g2.

FIG. 7. P4 as a function of g1 and κ1, the coupling strength between the pho-
tonic mode and the molecular electronic excitation and the photonic decay rate,
respectively.

cavity is lost. In these regimes, the interference between the pho-
tonic and plasmonic modes weakens, leading to a broader peak and
reduced energy selectivity. It is important to note that in realistic
Fabry–Pérot cavities, additional modes beyond the one explicitly
included in our model can also be present, potentially introducing
decay channels that reduce energy selectivity. However, isolating a
photonic mode within a few electronvolts is experimentally feasible,
as demonstrated in Refs. 75 and 76. Furthermore, even if additional
modes appear within the 4–6 eV range relevant to the vibronic tran-
sitions in our case study, their impact can be mitigated by ensuring
they are not resonant with the molecule’s vibronic transitions, thus
preventing the opening of unwanted decay channels. These effects
can be further reduced by optimizing the cavity mode parameters,
as shown in Table I.

V. SUMMARY
We have explored how hybrid metallodielectric cavities can

control photoisomerization reactions at the single-molecule level.
These reactions can be tailored via the cavity-induced Purcell effect,
which enhances relaxation from the electronically excited state to the

desired geometry. In contrast to previous works,26–29 which stud-
ied this effect in one-mode plasmonic cavities, we demonstrate that
interference between two modes in a hybrid cavity plays a crucial
role in achieving energy-selective Purcell enhancement. This selec-
tivity leads to higher photoisomerization yields compared to those
of one-mode cavities or cavity-free setups. To illustrate this, we have
examined the excited-state asymmetric proton transfer in (Z)-3-
aminoacrylaldehyde. Based on electronic-structure calculations and
using rate equations that incorporate cavity effects, we study pop-
ulation transfer from the vibronic ground state (proton located on
the nitrogen atom) to the fourth excited vibrational state (proton
located on the oxygen atom). Optimized, yet realistic, parameters
for one-mode plasmonic and two-mode hybrid cavities were used.
Our results reveal that while both cavity setups accelerate the pro-
ton transfer reaction and reduce the required laser intensity, the
hybrid cavity achieves a significantly higher population transfer.
This enhancement comes from the superior energy selectivity of the
hybrid cavity, which only targets the desired relaxation pathway. We
have also analyzed the sensitivity of these results against variations in
the parameters of the hybrid cavity and found that it is quite robust.
These findings highlight the potential of hybrid cavities for control-
ling photochemical reactions, paving the way for future applications
in cavity-induced chemistry.
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APPENDIX: DERIVATION OF THE RATE CONSTANT
kESPT

i→ f FROM THE LINDBLAD MASTER EQUATION

Here, we derive Eq. (6) from the Lindblad master equation
associated with Ĥ0, treating perturbatively the interaction with the
laser and the population transfer to the electronic ground state. This
derivation naturally yields the decay operators for the spontaneous
emission of the molecule and the cavity losses, in agreement with
Refs. 53–55.

The Lindblad master equation associated with the effective NH
Hamiltonian Ĥ0 [Eq. (5)] that also considers the driving by the laser,
V̂L(t) = ΩD(X)(e−iωLtσ+ + e+iωLtσ−), can be written as

dρ(t)
dt
= −

i
h̵
[Ĥ(t)ρ(t) − ρ(t)Ĥ †

(t)] +∑
k

V̂(k)d ρ(t)V̂(k)†d , (A1)

where Ĥ(t) = Ĥ0 + V̂L(t) and the sum over k includes the jump
operators of the Lindblad superoperator corresponding to the cav-
ity losses and the spontaneous emission of the molecule, such that
V̂(1)d =

√
κσ−, V̂(2)d =

√
κ1a1, and V̂(3)d =

√
κ2a2.

We consider the eigenstates of Ĥ0 and Ĥ†
0 , given by Ĥ0∣n)

= Ẽn∣n) and Ĥ†
0 ∣n
∗
) = Ẽ∗n ∣n∗), respectively, as the non-perturbative

zeroth-order states where the notation ∣ . . . ) and (. . . ∣ rather than
∣ . . .⟩ and ⟨. . . ∣ is used for the right and left eigenstates of NH
Hamiltonians, and Ẽn is complex. Because Ĥ0 and Ĥ†

0 are the
complex symmetric Hamiltonians, the eigenstates ∣n∗) and (n∗∣
are the complex conjugates of ∣n) and (n∣ , respectively. Further-
more, the states in the zeroth optical excitation manifold of Ĥ0
and Ĥ†

0 , which can be described by a Hermitian Hamiltonian,
obey ∣n∗) = ∣n) = ∣n⟩ and (n∗∣ = (n∣ = ⟨n∣ and are real. We express
the density matrix ρ(t) in terms of these zeroth-order states as
ρ(t) = ∑m,n bmn(t)∣m)(n∗∣ , and obtain the master equation for the
coefficient bmn = (m∣ρ(t)∣n∗),

dbmn(t)
dt

= −
i
h̵
((Ẽm − Ẽ∗n)bmn(t)

+∑
l
(m∣V̂L(t)∣l)bln(t) +∑

p
(p∗∣V̂L(t)∣n∗)bmp(t))

+∑
k
∑
l,p
(m∣V̂(k)d ∣l)(p

∗
∣V̂(k)†d ∣n∗)blp(t). (A2)

Next, we isolate the effect of the laser interaction and Lindblad jump
operators by transforming Eq. (A2) to the NH interaction picture, as
in Ref. 77. This yields the following master equation:

db̃mn(t)
dt

= −
i
h̵
⎛

⎝
∑

l
(m∣V̂L(t)∣l)ei(Ẽ m−Ẽ l)t/h̵b̃ln(t)

+∑
p
(p∗∣V̂L(t)∣n∗)ei(Ẽ ∗p −Ẽ ∗n )t/h̵b̃mp(t)

⎞

⎠
+∑

k
∑
l,p

b̃lp(t)

× (m∣V̂(k)d ∣l)e
i(Ẽ m−Ẽ l)t/h̵(p∗∣V̂(k)†d ∣n∗)ei(Ẽ ∗p −Ẽ ∗n )t/h̵,

(A3)

where the coefficients of the density matrix in the interaction pic-
ture are given by b̃mn(t) = ei(Ẽ m−Ẽ ∗n )t/h̵bmn(t). We treat Eq. (A3)
perturbatively by iteratively solving it up to the second order with
the initial condition b̃mn(0) = δimδin. Note that ∣i⟩ = ∣i) = ∣i∗) is the
initial state of the population transfer process corresponding to the
zeroth optical excitation of Ĥ0 and Ĥ†

0 . As a result, we obtain that the
elements of the density matrix in the first optical excitation manifold
of Ĥ0 and Ĥ†

0 obey

b̃mn(t) =
i
h̵

Ω2
⟨i∣D(X)σ−∣n∗)(m∣D(x)σ+∣i⟩

× ∫

t

0
dt′
⎛

⎝

ei(Ẽm−Ẽn)t′/h̵ − ei(Ẽm−Ei−h̵ωL)t′/h̵

Ei + h̵ωL − Ẽ∗n

+
ei(Ẽm−Ẽn)t′/h̵ − ei(Ei+h̵ωL−Ẽ∗n )t′/h̵

Ẽm − Ei − h̵ωL

⎞

⎠
, (A4)

where Ei is the energy of the initial state and is real.
Finally, we substitute Eq. (A4) into Eq. (A3) and neglect higher-

order terms of Ω to obtain a master equation for the population in
the final state b ff (t),

db ff (t)
dt

= Ω2
∑

k
∑
l,p

⟨i∣D(X)σ−∣p∗)(p∗∣V̂(k)†d ∣ f ⟩

Ei + h̵ωL − Ẽ∗p

×
⟨ f ∣ V̂(k)d ∣l)(l∣D(x)σ+∣i⟩

Ẽl − Ei − h̵ωL
(1 + ei(Ẽ ∗p −Ẽ l)t/h̵

− ei(Ei+h̵ωL−Ẽ l)t/h̵ − ei(Ẽ ∗p −Ei−h̵ωL)t/h̵). (A5)

Since ∣ f ⟩ = ∣ f ) = ∣ f ∗) is a state within the zeroth optical excitation
subspace of Ĥ0 and Ĥ†

0 , it is associated with the real eigenvalue E f

and b f f (t) = b̃ f f (t). As t →∞, the time-dependent exponents in
Eq. (A5) vanish due to the positive imaginary part of Ẽ∗p and the neg-
ative imaginary part of Ẽl. Since (l∣D(x)σ+∣i⟩ = [ ⟨i∣D(X)σ−∣k∗)]∗

and ⟨ f ∣V̂(k)d ∣l) = [(l
∗
∣V̂(k)†d ∣ f ⟩]∗, this results in the rate constant

kESPT
i→ f =

db f f (t→∞)
dt given in Eq. (6).
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tanović, M. Colautti, P. Lombardi, K. Major, I. Deperasińska, et al., “Single organic
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