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Permutational symmetry for identical multilevel systems: A second-quantized approach

Rui E. F. Silva 1,2,* and Johannes Feist 2,†

1Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC),
Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain

2Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center,
Universidad Autónoma de Madrid, E-28049 Madrid, Spain

(Received 19 January 2022; accepted 23 March 2022; published 4 April 2022)

We develop a framework that provides a straightforward approach to fully exploit the permutational symmetry
of identical multilevel systems. By taking into account the permutational symmetry, we outline a simple scheme
that allows us to map the dynamics of N identical d-level systems to the dynamics of d bosonic modes
with N particles, achieving an exponential reduction on the dimensionality of the problem in a simple and
straightforward way. In particular, we consider the Lindblad dynamics of several identical multilevel systems
interacting with a common subsystem under the action of collective dissipation terms.
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I. INTRODUCTION

When dealing with a collection of N d-level systems, a
well-known problem is the so-called curse of dimensionality,
i.e., the fact that the dimension of the Hilbert space scales
exponentially as dN . However, in many different physical
phenomena, such as lasing [1,2], phase transitions [3–5],
superradiance [6,7], strong coupling with organic molecules
[8,9] and microwave photonics [10], the theoretical model-
ing usually assumes that the emitters are identical. In these
situations, permutational symmetry of the N d-level systems
can be used to greatly reduce the complexity of the problem.
This was addressed in the works of Gegg et al. [11–13],
Shammah et al. [14], and Kirton and Keeling [15,16]. In
these works, the dynamics of an open quantum system com-
posed of several identical emitters interacting with a common
subsystem under the action of individual, but identical, col-
lapse operators is considered. By exploiting the permutational
symmetry of the density matrix in the symmetrized Liouville
space, a huge reduction in the complexity of the problem is
achieved, allowing calculations for larger numbers of emitters
than possible otherwise. These efforts were conducted for
an ensemble of multilevel systems [11–13] and specialized
for the case of two-level systems [14–16]. In the absence
of individual dephasing operators and for appropriate initial
states, one can further restrict the Hilbert space to the totally
symmetric subspace [11,13]. In the case of two-level systems,
the construction of the totally symmetric subspace can be
achieved by using the Dicke basis, restricting the Hilbert space
to the highest superspin subspace [6,7].

In this paper, we notice that working in the totally sym-
metric subspace is completely equivalent to restricting the
possible states to bosonic many-body states. Therefore, by ap-
plying the rules of second quantization for bosons, we achieve
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the reduction to the totally symmetric subspace in a simple
and straightforward way, mapping the dynamics of N identical
d-level systems to the dynamics of d bosonic modes with N
particles.

II. THEORY

We start by considering the dynamics of N identical d-level
systems interacting with a common subsystem and under the
action of collective dissipation terms, described by the Lind-
blad master equation,

ρ̇ = −i[H, ρ] +
∑

i

LCi [ρ], (1)

where H is the Hamiltonian, possibly time dependent, and
LCi [ρ] = CiρC†

i − 1
2 (C†

i Ciρ + ρC†
i Ci ) is the Lindblad dissi-

pator for the collapse operator Ci. In the following, we assume
the Hamiltonian, H , to be invariant under any permutation of
the d-level systems. We also restrict the collapse operators,
Ci, to collective operators that are also invariant under any
permutation of the d-level systems. For the case where the
collapse operators may act locally on each d-level system, we
must construct and work on the symmetrized Liouville space
and this was taken into account in Refs. [11–16]. In this paper,
we restrict to the case where both the Hamiltonian and the
collapse operators are invariant under any permutation of the
emitters.

We may define the symmetrization operator

S = 1

N!

∑
π

Pπ (2)

where Pπ is a permutation operator and π runs over all pos-
sible permutations of the d-level systems. A permutationally
invariant operator, O, then satisfies [S, O] = 0. We also as-
sume that the initial state, ρ0 = ∑

i pi|ψi〉〈ψi|, is a totally
symmetric state, i.e., S|ψi〉 = |ψi〉 for all |ψi〉. Since both
the Hamiltonian, H , and the collapse operators, Ci, are per-
mutationally invariant operators, when solving the Lindblad

2469-9926/2022/105(4)/043704(7) 043704-1 ©2022 American Physical Society

https://orcid.org/0000-0002-1920-5861
https://orcid.org/0000-0002-7972-0646
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.105.043704&domain=pdf&date_stamp=2022-04-04
https://doi.org/10.1103/PhysRevA.105.043704


RUI E. F. SILVA AND JOHANNES FEIST PHYSICAL REVIEW A 105, 043704 (2022)

(a)

1 2 3 4

(b)

1 2 3 4

(c)

b†1b1

b†2b2

b†3b3

FIG. 1. (a), (b) Schematic representation of two product states of four three-level systems: (a) |1〉1|2〉2|3〉3|2〉4 and (b) |2〉1|3〉2|1〉3|2〉4. If
we restrict dynamics to the totally symmetric subspace, these two states will be always in a symmetric superposition that can be correctly taken
into account by using many-body bosonic states: (c) 1√

2!
b†

3b†
2b†

2b†
1|vac〉.

dynamics, the density matrix will always remain in the to-
tally symmetric subspace. This may be used to substantially
reduce the dimensionality of the problem. As already noticed
in Refs. [11,13], this reduction of dimensionality is even
larger than the one obtained by working in the symmetrized
Liouville space. We must stress that the difference in the re-
strictions imposed in this paper and the symmetrized Liouville
space approach is that here each collapse operator Ci must be
permutationally invariant, whereas in Refs. [11–16] only the
sum of all collapse operators,

∑
i Ci, must be permutationally

invariant.
We can write any permutationally invariant M-body oper-

ator acting solely on the emitters as

OM
em = 1

M!

N∑
i1...iM

′ d∑
α1...αM
β1...βM

V β1...βM
α1...αM

σ
i1
β1,α1

. . . σ
iM
βM ,αM

(3)

where σ
j

β,α = |β〉 j〈α| j is an operator acting on emitter j, and
the primed sum indicates that all indices i1, . . . , iM have to be
distinct. Using this definition, any permutationally invariant
operator acting on the emitters and containing up to M-body
terms can be written as

Oem =
M∑

J=1

OJ
em. (4)

In general, a permutationally invariant operator that may act
on the emitters and on a common subsystem can be written as
the sum of three terms:

O = Oem + Oem-sub + Osub, (5)

where Oem (Osub) is an operator acting only on the emitters
(subsystem). The interaction term, Oem-sub, can be written as
Oem-sub = ∑

q AqBq, where Aq acts solely on the emitters and
must have the form of Eq. (4) and Bq is an operator acting on
the common subsystem.

At this point, one may realize that if the state of the system
is restricted to the totally symmetric Hilbert space one can
take advantage of all the formalisms of second quantization
for bosons, for which the many-body states are automatically
restricted to the totally symmetric Hilbert space. This can be
done by applying the rules of second quantization [17] and
mapping all the operators to a second-quantized form. For
instance, Eq. (3) becomes

OM
em = 1

M!

d∑
α1...αM
β1...βM

V β1...βM
α1...αM

b†
β1

. . . b†
βM

bα1 . . . bαM (6)

where b†
α and bα are the bosonic creation and annihilation

operators of an emitter in state α. The recipe then simply
consists in applying these rules to all the relevant operators,
i.e., the Hamiltonian, the collapse operators, and all the de-
sired observables, giving a Hamiltonian that can be easily
implemented with standard quantum optics packages such
as QUTIP [18]. For the typical cases where the number of
emitters N is fixed, one can restrict the Hilbert space to the
N-particle subspace, for which 〈∑d

α=1 b†
αbα〉 = N . Similarly,

for the initial state, ρ0 = ∑
i pi|ψi〉〈ψi|, each |ψi〉 has to be

mapped to its second-quantized version, i.e., expressed in the
Fock space.

This approach thus solves the dynamics of N permutation-
ally invariant d-level systems by treating it as the dynamics of
N bosons in a system with d modes, see Fig. 1 for a schematic
picture. It has the usual advantages of a second-quantized
formulation. In particular, it is not necessary to explicitly con-
struct a totally symmetric subspace, and the correct symmetry
enhancement factors are automatically encoded within and
obtained from the bosonic operator algebra.

III. RESULTS

The study of few-level emitters interacting with light is
at the core of our understanding of light-matter interaction.
In principle, the problem of light-matter interaction can be
fully understood within the laws of quantum electrodynam-
ics (QED) [19]. However, for practical applications in fields
such as cavity QED, quantum optics, quantum nanophotonics,
and quantum plasmonics, a very common assumption is that
matter degrees of freedom can be described using only a
few levels and that the interaction with light is dominated
by a single mode of the electromagnetic field. In the case
of two-level systems, this leads to the well-known Rabi [20],
Dicke [6], Jaynes-Cummings [21], and Tavis-Cummings [22]
models, which differ in the number of emitters and the use
of the rotating wave approximation. Nevertheless, even when
dealing with an ensemble of few-level systems, the expo-
nential scaling of the Hilbert-space dimension quickly makes
the problem intractable and symmetry considerations must be
taken into account to reduce the dimension of the problem.
In the context of the interaction of an ensemble of identical
two-level systems with a cavity mode, superradiance can be
observed. To study superradiance, it is useful to rewrite the
Hamiltonian using spin operators and use the so-called Dicke
basis [7]. In the following, we demonstrate our approach for
several examples within this context.
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A. Tavis-Cummings model

As a first example to illustrate our approach, we will ap-
ply it to the Tavis-Cummings model [22]. For this relatively
simple example, we show explicitly that the state space and
matrix elements within the second quantized picture are the
same as in conventional approaches. The Tavis-Cummings
Hamiltonian is given by

HTC =
N∑

j=1

ω0

2

(
σ j

e,e − σ j
g,g

) + ωca†
cac

+ g
N∑

j=1

(
acσ

j
e,g + a†

cσ
j

g,e

)
(7)

where g (e) stands for the ground (excited) state, N is the
number of two-level systems, ω0 (ωc) is the two-level system
(cavity) energy, and ac is the bosonic annihilation operator for
the cavity. A standard approach is to rewrite the above Hamil-
tonian using spin operators and work in the Dicke basis [7],
where S+ = ∑N

j=1 σ
j

e,g, S− = (S+)† and Sz = ∑N
j=1

1
2 (σ j

e,e −
σ

j
g,g). The Hamiltonian can then be written as

HTC = ω0Sz + ωca†
cac + g(acS+ + a†

cS−), (8)

and the emitter states are |s, m〉, where s and m are the quan-
tum numbers associated to S2 and Sz. The totally symmetric
subspace is then the highest spin subspace, where s = N/2.

If we instead apply our approach and second quantize
Eq. (7), we obtain

HTC = ω0

2
(b†

ebe − b†
gbg) + ωca†

cac + g(acb†
ebg + a†

cb†
gbe).

(9)
In order to see that both approaches are completely equivalent
in the totally symmetric subspace (s = N/2), we examine the
matrix elements of S−. The action of S− on a Dicke state is

S−|s, m〉 =
√

s(s + 1) − m(m − 1)|s, m − 1〉. (10)

Here, m = Nexc − N/2 is directly related to the number of
excited emitters, Nexc.

For the second-quantized version, S− maps to b†
gbe, which

acts on the Fock states |ng, ne〉, where ng = N − Nexc and ne =
Nexc, as

b†
gbe|ng, ne〉 = √

(ng + 1)ne|ng + 1, ne − 1〉. (11)

The Dicke state |s = N/2, m = Nexc − N/2〉 is equal to the
Fock state |N − Nexc, Nexc〉, and comparing Eqs. (10) and (11)
shows that the matrix elements are indeed equal. The equality
can also easily be checked for Sz ≡ 1

2 (b†
ebe − b†

gbg). There-
fore, within the totally symmetric subspace, it is completely
equivalent to work with either of the two Hamiltonians,
Eq. (7) or Eq. (9).

B. Holstein-Tavis-Cummings model

The field of molecular polaritonics and polaritonic chem-
istry [23–28] studies how to manipulate and use the changes
in electronic and vibrational structure and dynamics of
molecules under strong coupling with confined modes of
light. Since molecules are complex systems with signifi-
cant internal structure due to rovibrational (nuclear) motion,

describing them as two-level systems is often not a good
approximation. At the same time, the influence of individ-
ual collapse operators acting on each molecule can often be
neglected. On the one hand, their individual radiative decay
(on scales of nanoseconds) is often much slower than the
dynamics of interest. On the other hand, the influence of
the vibrational modes that is sometimes included through a
pure-dephasing Lindblad term (which has to be replaced by a
more careful treatment under strong light-matter coupling to
prevent unphysical effects [29]) can be much better described
by treating some vibrational modes (or superpositions of them
corresponding to so-called reaction coordinates) explicitly,
which allows neglecting the other ones at reasonably short
timescales [30,31]. These considerations apply especially for
organic molecules interacting with a plasmonic nanocavity
[32,33], since their ultrafast loss is typically the dominant
decay channel in the system. Explicit inclusion of nuclear
degrees of freedom also allows us to represent many ef-
fects that cannot be understood within a two-level system
description [8,34]. A workhorse in this field is the so-called
Holstein-Tavis-Cummings model [8], in which the molecule
is approximated using the Holstein model, i.e., two displaced
harmonic oscillators for the electronic ground and excited
states. Therefore, when dealing with molecular polaritonics,
it is common to face situations where one needs to solve the
dynamics of identical multilevel systems without any individ-
ual collapse operator.

The Holstein-Tavis-Cummings Hamiltonian can be written
as

HHTC = ωca†
cac +

Nmol∑
i=1

H (i)
mol +

Nmol∑
i=1

H (i)
cav-mol, (12)

H (i)
mol = ωeσ

+
i σ−

i + ωvc†
i ci − λvσ

+
i σ−

i (c†
i + ci ) (13)

H (i)
cav-mol = g(σ+

i ac + a†
cσ

−
i ), (14)

where σ+
i (σ−

i ) is the raising (lowering) operator for the elec-
tronic state in molecule i with excitation energy ωe, whereas
ci is the annihilation operator for the vibrational mode in
molecule i, with frequency ωv and exciton-phonon coupling
strength λv . The cavity is described through the photon an-
nihilation (creation) operators ac (a†

c), with photon energy
ωc. In addition to the coherent dynamics described by the
Hamiltonian, the cavity mode decays with rate γc, described
by a standard Lindblad decay operator C = √

γcac.
The Holstein-Tavis-Cummings Hamiltonian can be rewrit-

ten in terms of the eigenstates of the single-molecule
Hamiltonian,

H (i)
mol =

∑
s=g,e

∑
ν

ωs,ν |s, ν〉i〈s, ν|i, (15)

which are labeled as |g, ν〉i and |e, ν〉i for vibrational sublevel
ν in the electronic ground and excited state, respectively.
Their corresponding energies are ωg,ν = ωvν and ωe,ν = ωe +
ωvν − λ2

v/ωv . In this basis, the light-matter interaction opera-
tor is given by

H (i)
cav-mol = g

∑
νν ′

(acFνν ′ |e, ν〉i〈g, ν ′|i + H.c.), (16)
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FIG. 2. (a) Normalized cavity population 〈a†
cac〉N−1

mol in the
Holstein-Tavis-Cummings model, for Nmol = 1, 2, 3, 4, 5 calculated
both within the second-quantized approach (full lines) and without
exploiting permutational symmetry (dashed lines). See main text for
parameters. (b) The same for the electronic excited-state population,∑Nmol

i 〈σ+
i σ−

i 〉N−1
mol.

where Fνν ′ = 〈e, ν|σ+
i |g, ν ′〉 is a vibrational overlap integral

or Franck-Condon factor and can be analytically obtained.
Since both the Hamiltonian and collapse operators are

permutationally invariant, we can map Eq. (12) to its second-
quantized form as long as the initial state is fully symmetric.
This gives

HHTC = ωca†
cac +

∑
s=g,e

∑
ν

ωs,νb†
s,νbs,ν

+ g
∑
νν ′

(acFνν ′b†
e,νbg,ν ′ + H.c.). (17)

In the following, we choose parameter values typical for
organic molecules such as anthracene coupled to nanoplas-
monic cavities [30], with ωe = 3.5 eV, ωv = 0.182 eV, λv =
0.096 eV, γc = 0.2 eV, g = 0.035 eV. We set the cavity pho-
ton energy to be on resonance with the emission peak of the
molecule, ωc = ωe − 2λ2

v/ωv . The initial state is chosen to
be the fully inverted state, i.e., the state where all molecules
are instantaneously excited to the electronic excited state by a
vertical Franck-Condon transition.

In Figs. 2(a) and 2(b), we show the numerical results
for the dynamics for the cavity and excited-state population,

respectively. In the basis truncation for the single-molecule
Hilbert space, we include the six lowest vibrational states for
the ground state and the four lowest vibrational states for the
electronic excited state, which gives converged results. Within
the second-quantized approach, we show results up to Nmol =
5, while without resorting to any permutational symmetry we
show results up to Nmol = 3.

The exciton population in Fig. 2(b) displays a clear
enhancement of the spontaneous emission due to Dicke
superradiance [6] as the number of emitters is increased.
Furthermore, a modulation of the decay rate with a period
of about 22 fs can be observed. This modulation is more
clearly visible in the cavity population [see Fig. 2(a)] and is
a signature of the vibrational motion [30], which has a period
of Tv = 2π/ωv = 22.7 fs.

As expected, both approaches are completely equivalent.
However, while the Hilbert space for the brute-force approach
reaches size NHilb = 4000 for three molecules, it only has size
NHilb = 220 within the second-quantized approach exploiting
the permutational symmetry. For five molecules, this ad-
vantage improves to NHilb = 12 012 versus NHilb = 600 000.
Here, it should be noted that the size of the density matrix that
is propagated in the Lindblad master equation is NHilb × NHilb,
while the Liouvillian superoperator describing this evolution
can be formally treated as a N2

Hilb × N2
Hilb matrix.

C. Three-level systems

To give another numerical example to illustrate this map-
ping, we formulate a simple model Hamiltonian of N d-level
systems, where the levels of each emitter are equally separated
in energy by ωe, coupled to a cavity mode with frequency
ωc = ωe = 1 eV. The transition operator of each emitter is de-
fined as μi = μ+

i + μ−
i , where μ+

i = ∑d−1
ν=1 σ i

ν,ν+1 and μ−
i =

(μ+
i )† and each emitter is coupled to the cavity mode by a

coupling strength of g = 0.15√
N

eV in the rotating wave approxi-
mation. We also include an all-to-all dipole-dipole interaction
term, Hd-d = D

∑N
k, j �=k μiμ j , where D = 0.1 eV. The Hamil-

tonian is then given by

H =
N∑

i=1

d∑
ν=1

ωνσ
i
ν,ν + ωca†

cac + Hd-d

+ g
N∑

i=1

(μ−
i a†

c + H.c.), (18)

where ων = νωe. The system is under the action of the
incoherent decay of the cavity, Ccav = √

γcac where γc =
0.15 eV, as well as collective spontaneous emission, Cν =√

�↓
∑N

i=1 σ i
ν,ν+1, where ν runs from 1 to d − 1 and �↓ =

0.05 eV. The initial state is chosen to be the fully inverted
state, |ψ0〉 = ∏N

j=1 |d〉 j ⊗ |χ〉cav, where all emitters are in the
most excited state and the cavity is in the vacuum state.

The above Hamiltonian and collapse operators are clearly
invariant under any permutation of the emitters. Also, the ini-
tial state belongs to the totally symmetric subspace. Therefore,
we can again proceed with the mapping by second quantizing
all relevant operators. In particular, the Hamiltonian can be
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FIG. 3. (a) Dynamics for N = 5 three-level emitters calculated
within the second-quantized approach (full lines) and without using
the permutational symmetry (dashed lines). See main text for param-
eters. (b) The same for N = 17 emitters, which is only possible with
reasonable effort when using the second-quantized approach.

written as

H =
d∑

ν=1

ωνb†
νbν + ωca†

cac + Hd-d

+ g
N∑

i=1

d∑
ν=1

(b†
νbν+1a†

c + H.c.), (19)

where

Hd-d = D
d−1∑
ν=1

d−1∑
μ=1

(b†
νb†

μbν+1bμ+1 + b†
ν+1b†

μ+1bνbμ

+ b†
ν+1b†

μbνbμ+1 + b†
νb†

μ+1bν+1bμ). (20)

Note that this operator is expressed using normal ordering.
The d − 1 collective spontaneous emission collapse operators
can be rewritten as Cν = √

�↓b†
νbν+1. Finally, the initial state

is just |ψ0〉 = 1√
N!

(b†
d )N |vac〉em|vac〉cav.

In Figs. 3 and 4, we show the results of the dynamics for the
case of three-level systems, i.e., d = 3. The total population of
the different levels, 〈∑N

i=1 σ i
ν,ν〉, can be mapped in the second-

quantized approach to 〈b†
νbν〉. Figure 3(a) shows the results for
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FIG. 4. (a) Expectation value of the dipole-dipole interaction
term, 〈μiμ j〉 for i �= j for the simulation shown in Fig. 3(a) (with
N = 5), within the second-quantized approach (full lines) and with-
out using the permutational symmetry (dashed lines). (b) The same
for the simulation in Fig. 3(b) with N = 17 emitters, only using the
second-quantized approach.

N = 5. In Fig. 3(b), we show the results for N = 17 emitters.
In Fig. 4, we show the time-dependent expectation value of
the dipole-dipole interaction term, 〈μiμ j〉 for i �= j.

Again, as expected, the second-quantized approach is com-
pletely equivalent to the direct solution. In this case, the
brute-force approach is numerically intractable, as the number
of entries in the density matrix is d2N N2

c , where Nc is the
dimension of the cavity Hilbert space. When working only
with the totally symmetric subspace, the number of entries in
the density matrix is reduced to

(
(N + d − 1)!

N!(d − 1)!

)2

N2
c , (21)

greatly reducing the size of the dynamical object. When com-
paring with the approach that uses the symmetrized Liouville
space, where the number of entries in the density matrix is
(N+d2−1)!
N!(d2−1)! N2

c [11,13], we also get a substantial reduction. As
an example, for d = 3 and N = 17, we have a reduction
of the number of entries in the density matrix by a factor
of 37.

Since we start in the fully inverted state, the dipole-dipole
interaction, Hd-d , starts to transfer population from the highest
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excited emitter state to the intermediate excited state and to
a smaller extent to the emitter ground state. After this first
moment, the cavity starts to become populated and, due to
its decay, drives the system to its overall ground state (see
Fig. 3). It is important to notice that due to the dipole-dipole
interaction, Hd-d , the ground state of the system is not the
state where all emitters are in their bare ground state. Con-
sequently, there is a residual population of the intermediate
excited state for long times (see Fig. 3). This is also the reason
why the dipole-dipole interaction goes to negative values for
long times (see Fig. 4).

D. N-excitation subspace

When working with the dynamics of emitters coupled to
cavity modes, there are situations in which we are not inter-
ested in working with the full excitation subspace. Indeed,
in many common cases, restricting to the first or second
excitation subspace is enough [9,34]. Implementing such a
restriction within the current approach is rather simple, as one
only needs to define an operator that determines the number
of excitations in terms of creation and annihilation operators
of the emitter levels. As an example, if one is working with
the Holstein-Tavis-Cummings model, where each emitter is
described as having two electronic states, ground and excited,
with one vibrational mode, one could define a subspace where
restrictions are imposed on either the electronic or nuclear
excitations, or both.

As a concrete example, we discuss vibrational strong
coupling for the case where a single (approximately har-
monic) vibrational mode per molecule is in resonance with
a cavity mode. The simplest Hamiltonian to model collective
vibrational strong coupling is [29]

H = ωca†
cac +

Nmol∑
i=1

ωvc†
i ci +

Nmol∑
i=1

g(a†
cci + H.c.), (22)

where ac is the annihilation operator for the cavity mode
with frequency ωc, and ci is the annihilation operator of the
optically active vibrational mode of molecule i, character-
ized by its frequency ωv . Nmol is the number of molecules,
and the cavity-phonon interaction is given by g. Rewriting
the vibrational operators using the eigenstates of the har-
monic oscillator, c†

i = ∑∞
n=0

√
n + 1|n + 1〉i〈n|i, Eq. (22) can

be written as

H = ωca†
cac +

Nmol∑
i=1

∞∑
n=0

nωv|n〉i〈n|i

+
Nmol∑
i=1

∞∑
n=0

g(ac

√
n + 1|n + 1〉i〈n|i + H.c.). (23)

This Hamiltonian is permutationally invariant under the ex-
change of any two molecules. If the initial state is in the totally

symmetric subspace, we can map the Hamiltonian to

H = ωca†
cac +

∞∑
n=0

nωvb†
nbn

+
∞∑

n=0

g(ac

√
n + 1b†

n+1bn + H.c.), (24)

where bn is the bosonic annihilation operator for the state
|n〉 and the states of interest are restricted to the subspace
where 〈∑∞

n=0 b†
nbn〉 = Nmol. For regimes in which ωv ≈ ωc,

it is reasonable to work in the Nexc-excitation subspace [35].
In this formalism, this additional restriction can be simply
formulated as 〈∑∞

n=0 nb†
nbn + a†

cac〉 = Nexc.

IV. CONCLUSION

To conclude, we have proposed a scheme to fully exploit
the permutational symmetry of identical but arbitrary emitters
when only collective dissipation operators are considered.
This scheme relies on the fact that the totally symmetric
subspace is equivalent to a bosonic many-body state. After
mapping all relevant operators to a second-quantized picture
using a simple procedure, the explicit construction of the
totally symmetric subspace from direct state products is not
required anymore. This approach thus provides a straight-
forward and easily implemented way to treat such systems
while fully exploiting their permutational symmetry to sig-
nificantly reduce the size of the Hilbert space. We discuss
several examples, such as the Tavis-Cummings model, the
Holstein-Tavis-Cummings model, and a model Hamiltonian
where two-body operators are taken into account, and ex-
plicitly demonstrate the equivalence of the second-quantized
approach to direct solution.

We expect that this paper will be helpful for simulations
that can fully exploit the permutational symmetry of emitters
in totally symmetric cases in a very simple way. This can be
especially useful for situations where each emitter must be
considered as having an internal structure that goes beyond
the two-level approximation, such as necessary in the field
of molecular polaritonics. For such systems, the current ap-
proach can provide a significant reduction of the numerical
complexity for very little effort.
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