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Recovering an accurate Lindblad equation from the Bloch-Redfield
equation for general open quantum systems
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Master equations play a pivotal role in investigating open quantum systems. In particular, the Bloch-Redfield
equation stands out due to its relation to a concrete physical environment. However, without further approxi-
mations it does not lead to a Lindblad master equation that guarantees that the density matrix stays completely
positive, which has raised some concerns regarding its use. This study builds on previous efforts to transform
the Bloch-Redfield framework into a mathematically robust Lindblad equation while fully preserving the effects
that are lost within the secular approximation that is commonly used to guarantee positivity. These previous
approaches introduced two potential deficiencies: The environment-induced energy shift can be non-Hermitian
and some decay rates can be negative, violating the assumptions of Lindblad’s theorem. Here we propose and
evaluate straightforward solutions to both problems. Our approach offers an effective and general procedure for
obtaining a Lindblad equation, derived from a concrete physical environment, while mitigating the unphysical
dynamics present in the Bloch-Redfield equation.
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I. INTRODUCTION

Inevitably, any quantum-mechanical system interacts with
its surroundings [1]. Therefore, it is not possible to fully
understand the dynamics of a system without properly ac-
counting for the environment. In practice, direct approaches
to calculate the evolution with the Schrödinger equation are
far from feasible, due to the large (even infinite) number
of degrees of freedom in the environment. Consequently, it
becomes imperative to develop approximate methods that
identify and preserve the relevant information. Typically,
one’s primary interest is the system, and the system-
environment coupling is weak enough that only negligible
correlations appear between the two. In this context, the
framework of open quantum systems [2] provides a descrip-
tion of the system’s time evolution through so-called quantum
master equations (QMEs). By incorporating the effect of the
environment perturbatively, QMEs have garnered use in most
fields of physics, from condensed-matter physics and quan-
tum optics [3–6] to high-energy physics and cosmology [7,8].
However, despite their widespread use, QMEs are perturbative
in nature and rely on approximations whose physical mean-
ing and mathematical accuracy have to be considered. More
specifically, different QMEs can depend on varying degrees
of approximation, which can in turn invalidate one in favor of
another.

Lindblad’s theorem shows that any Markovian QME cor-
responding to a trace-preserving and completely positive map
can be written as a Gorini-Kossakowski-Sudarshan-Lindblad
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master equation [2,9,10], from here on called Lindblad master
equation (LME) for conciseness. It is given by

ρ̇ = − i

h̄
[H + h̄�,ρ] +

∑
i j

γi j

2
(−{A†

i A j, ρ} + 2AjρA†
i )

(1)

and guarantees that the density matrix stays physical at all
times, i.e., that it is Hermitian, has trace equal to one, and
only contains non-negative diagonal entries. Here ρ is the
system’s density matrix, H is the bare system Hamiltonian,
h̄� is the (Hermitian) Hamiltonian induced by the interaction
with the environment, Ai are the collapse operators, and γi j

is a positive-semidefinite matrix known as the Kossakowski
matrix. The first term on the right-hand side describes the
unitary evolution of the system, while the second term de-
scribes the dissipation induced by the environment. The LME
is commonly written in a slightly simpler form obtained by
transforming to the eigenbasis of the Kossakowski matrix
γi j , which makes the last term diagonal in i and j. While
many works use ad hoc LMEs with dissipation rates and
operators chosen manually, this can lead to unphysical ef-
fects, especially if the system consists of coupled subsystems
[11–16]. A more systematic approach consists in starting from
a microscopic Hamiltonian including both system and bath
and then tracing out the environmental degrees of freedom.
Unfortunately, this procedure does not yield an LME in gen-
eral, but another QME known as the Bloch-Redfield equation
(BRE) [2], which does not guarantee positivity of the popu-
lations and can thus lead to unphysical density matrices. To
finally obtain an LME, the traditional approach is to perform
the so-called secular approximation on the BRE, in which
terms that oscillate (within the interaction picture) are as-
sumed to average out and are removed. However, it has been
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shown that this step is not always well justified or accurate
[17–19].

Indeed, the secularization procedure completely eliminates
the couplings between populations and coherences and can
therefore miss significant effects. This is the case if, for in-
stance, the energy spectrum has levels that are close to each
other compared to the energy scale associated with the cou-
pling to the environment. With the secular approximation,
the resulting LME disregards important interference effects
between these states, while the BRE includes the relevant
couplings. Its mathematical flaws, however, have motivated
the development of improved procedures that yield an LME
and overcome the limitations of the secular approximation
[20–24]. In general, it has been shown that any alteration
to the BRE will incur certain problems regarding thermody-
namic properties or local conservation laws [25,26]. Fixing
such issues therefore requires alternative procedures such as
those explored in [27–29], to go to higher orders in the cou-
pling to the bath or more accurate alternatives to the BRE.
Here we do not consider such problems and instead focus
on the simpler goal of retrieving an effective LME from the
BRE. Among the available methods, the approach proposed
in [22] is notable for its simplicity and effectiveness. There
the authors proposed a prescription that works well for sim-
ple system-environment interaction Hamiltonians within the
rotating-wave approximation. We further extended those re-
sults in [30] by incorporating counterrotating terms into more
complex system-environment interactions. Still, the master
equation used in [30] can lead to two undesired possibilities:
(i) non-Hermitian, off-diagonal couplings, depending on the
interplay between the energy structure of the system and the
resonances of the bath, and (ii) a nonpositive Kossakowski
matrix if there are cross correlations between bath opera-
tors. Either option invalidates the requirements for an LME
and both are a direct consequence of the application of the
methodology of [22] to complex systems and environments.
Notwithstanding, under conditions of geometrical symmetry
and with a careful treatment of the system level structure,
these difficulties can be overcome. Indeed, we took this ap-
proach in [30] to reveal strong Casimir-Polder-induced state
mixing and counterintuitive state protection in a system in-
volving a hydrogen atom and a dielectric nanoparticle.

The goal of the present article is to present a way to deal
with arbitrary setups by modifying the prescription of [22].
We introduce and compare several alternatives that resolve the
issues of non-Hermitian couplings and nonpositive semidefi-
niteness (NPS) of the Kossakowski matrix while maintaining
an accurate description of the dynamics, turning the BRE
into a general and precise LME. On one hand, we find that
the non-Hermiticity of the energy shift can be resolved by
using the arithmetic instead of the geometric mean in the
symmetrization procedure for the environment-induced en-
ergy shift. On the other hand, the NPS issue can be resolved
effectively by discarding the negative eigenvalues of the Kos-
sakowski matrix. We explain the details of the procedures and
justify them with model examples that capture the essence
of each problem. The PYTHON library QUTIP [31] has been
used throughout this work for the simulations that illustrate
and support our claims. The article is organized as follows.
In Sec. II we discuss the BRE and its deficiencies explicitly,

along with the explanation of the methodology developed in
[22] to turn it into an LME. The non-Hermiticity issue is
addressed in Sec. III, where two possibilities are compared
and eventually one is identified as the best. The analysis of
the NPS of the Kossakowski matrix is presented in Sec. IV.
We summarize the results of our exploration in Sec. V.

II. THEORY

In this section we write the BRE and elucidate how the
method proposed in [22] transforms it into an LME, subject
to certain conditions. Deviation from these conditions implies
that the resulting equation is not an LME, which motivates the
development of the extensions developed in this article.

A. Bloch-Redfield master equation

The BRE serves as the starting point in numerous deriva-
tions of LMEs, due to its physically motivated derivation. We
write it for a general system-bath interaction Hsb = ∑

α AαBα ,
where Aα and Bα represent system and bath operators, respec-
tively, and at zero temperature:

ρ̇ = − i

h̄
[H, ρ] +

∑
i j

{−i[�i j (ω j )σ
†
i σ jρ − ρ�i j (ωi )σ

†
i σ j]

+ i[�i j (ω j ) − �i j (ωi )]σ jρσ
†
i

− 1

2
[	i j (ω j )σ

†
i σ jρ + ρ	i j (ωi)σ

†
i σ j]

+ 1

2
[	i j (ω j ) + 	i j (ωi )]σ jρσ

†
i }. (2)

In this equation ρ and H represent the system’s density matrix
and Hamiltonian, the indices i and j are combined indices that
denote transitions, with σ j = |n j〉〈mj | the jth transition oper-
ator between eigenstates |n j〉 and |mj〉 of H . The frequency of
transition j is ω j = (Emj − Enj )/h̄, and the functions 	i j and
�i j are defined as

	i j (ω) =
∑
αβ

(Aα )∗i γαβ (ω)(Aβ ) j, (3a)

�i j (ω) =
∑
αβ

(Aα )∗i λαβ (ω)(Aβ ) j . (3b)

Here (Aβ ) j = Tr(σ †
j Aβ ) is the transition matrix element

associated with the jth transition, and the real functions γαβ

and λαβ are given by

γαβ (ω)

2
+ iλαβ =

∫ ∞

0
dτ 〈Bα (τ )Bβ (0)〉eiωτ , (4a)

where the imaginary and real parts are related through a
Kramers-Kronig-type relation

λαβ (ω) = 1

2π
P

∫
dω′ γαβ (ω′)

ω − ω′ . (4b)

The P denotes the principal value and γ is a nondiagonal
and positive-definite tensor-valued function. It is related to the
so-called spectral density J through γ = 2πJ, which charac-
terizes the coupling between the system and the bath. The
limitation to zero temperature comes from the assumption in
the derivation that the bath is approximately in the vacuum or
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FIG. 1. Breakdown of population positivity with the BRE. (a)–(c) Population of the states of a three-level system, as a function of the
coupling strength g/κ and time tκ . Blue and red indicate negative and positive population, respectively. (d)–(f) Same populations at g = κ

[dashed lines in (a)–(c)]. The blue region represents negative, unphysical population and the dashed line offers a visual aid to see how the
populations of the states |1〉 and |2〉 add up to more than one.

in a thermal state such that kBT � mini(ωi ). Not only is this a
common circumstance within, e.g., quantum optical systems,
but such an approximation is also not strictly necessary and is
done here only for simplicity.

Roughly speaking, �i j and 	i j can loosely be associ-
ated with the environment-induced energy shifts and decay
rates, respectively. However, this distinction is not completely
clear within the BRE itself, as the most natural interpretation
depends on the specific arrangement of the equation. For
instance, in Eq. (2) we would recover an equation of Lindblad
form if the following conditions were met: (i) The second line
should become a commutator, (ii) the third line should disap-
pear, (iii) the fourth line should become an anticommutator,
and (iv) the last line should become the refilling or quantum
jump term, with the same prefactor as the previous line. Then
the second line would straightforwardly become the energy
correction and the last two lines would embody Lindblad-like
dissipators, with clearly distinct roles for � and 	. These
requirements are not directly satisfied in Eq. (2) due to �i j

and 	i j being evaluated at two different frequencies in each
line, ω j and ωi, but the approach followed in [22] achieves
conditions (i)–(iv) by means of an additional, well-justified
approximation. In this paper we explore the same procedure.
Nevertheless, it should be noted that the conditions above are
not the only way to transform the BRE into a Lindblad-like
equation. In fact, with the commutator identity

aO1O2 + bO2O1 = a + b

2
{O1, O2} + a − b

2
[O1, O2], (5)

Eq. (2) can be reformulated as

ρ̇ = − i

h̄
[H, ρ] +

∑
i j

(
−K+

i j (ω j ) − K−
i j (ωi)

2
[σ †

i σ j, ρ]

+ K+
i j (ω j ) + K−

i j (ωi )

2
(−{σ †

i σ j, ρ} + 2σ jρσ
†
i )

)
, (6)

where K±
i j (ω j ) = 	i j (ω j )/2 ± i�i j (ω j ). In this form, the

BRE looks like an LME, with both � and 	 appearing in the
energy correction term and in the dissipators, blurring their
individual role. Note that even written as Eq. (6), the BRE is

not an LME, because the corresponding Kossakowski matrix
is not positive semidefinite.

We conclude this section on the BRE by showing in Fig. 1
that Eq. (2) can actually predict nonpositive density matrices.
To produce the figure, we have simulated a simple system
composed of a three-level system coupled to a reservoir with a
Lorentzian spectral density, schematically depicted in Fig. 2.
The system eigenstates are |0〉, |1〉, and |2〉, with two allowed
lowering transitions from the excited states |1〉 and |2〉 to
|0〉, characterized by transition frequencies ω1 and ω2, re-
spectively. Let us define the transition operators with nonzero
matrix element as

σ1 = |0〉〈1|, σ2 = |0〉〈2|, (7a)

σ1′ = σ
†
1 = |1〉〈0|, σ2′ = σ

†
2 = |2〉〈0|. (7b)

With this notation, the three-level system is coupled to a
reservoir of harmonic oscillators through

Hsb =
2∑

i=1

di(σi + σ
†
i )

∫
dω

√
J (ω)(bω + b†

ω ), (8)

FIG. 2. Side-by-side comparison of the system’s level structures
J (ω) and λ(ω). The parameters are h̄ωM = 1 eV, h̄κ = 0.1 eV, and
h̄g = 0.1 eV.
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where J (ω) is the spectral density and, for concreteness, we
set all di equal to each other and absorb them in the coupling
to the environment. For a Lorentzian bath,

J (ω) = g2

π

κ/2

(ω − ωM )2 + (κ/2)2
, (9a)

where g measures the coupling strength, with the absorbed
transition matrix elements, and ωM and κ are the position and
width of the peak of the mode described by the Lorentzian.
The corresponding integral λ is analytical and expressed as

λ(ω) = P
∫
R

dω′ J (ω′)
ω − ω′ = g2 ω − ωM

(ω − ωM )2 + (κ/2)2
. (9b)

The parameters are set to h̄ωM = 1 eV, h̄κ = 0.1 eV,
h̄ω1 = 0.75 eV, and h̄ω2 = 1.35 eV and the initial state is set
equal to |ψ (0)〉 = (|1〉 − |2〉)/

√
2. The population dynamics

is depicted in Fig. 1 as a function of the coupling strength and
time. In Figs. 1(a)–1(c), negative and positive values are repre-
sented in blue and red, respectively. Figures 1(d)–1(f) are a cut
along the dashed lines, at g = κ . Figures 1(a) and 1(d) reveal a
very prominent negative population in the ground state |0〉, an
unmistakable sign of nonphysicality. The preservation of the
trace under BRE evolution implies that the populations of |1〉
and |2〉 together must exceed 1. This compensation is evident
in the slight initial bumps observed in Figs. 1(e) and 1(f), both
above the 0.5 line.

B. Prescription to obtain an LME

In this section we explain the procedure devised in [22] to
turn the BRE into a Lindblad-like equation. We begin by not-
ing that there are two terms in every line in the sum of Eq. (2),
evaluated at ω j and ωi, respectively. The asymmetry in the
indices i and j is the reason why the conditions (i)–(iv) stated
in the preceding section are not fulfilled. To overcome this
difficulty, it was proposed to replace 	i j (ω j ) and 	i j (ωi) by
their geometric mean 	̃i j = √

	i j (ω j )
√

	i j (ωi ) and likewise
for �i j . This adjustment, whose accuracy is justified below,
removes the difference in the roles of ω j and ωi. We des-
ignate this prescription as g� − g	, as both magnitudes are
replaced by geometric averages. To be more exact, Ref. [22]
deals with systems with one system-bath interaction, while
this explicit formulation, first presented in [30], accounts for
multiple interactions, including cross correlations between
bath operators.

After applying the replacement of the geometric mean in
Eq. (2), the master equation is

ρ̇ = − i

h̄
[H, ρ] − i

∑
i j

�̃i j[σ
†
i σ j, ρ]

+
∑

i j

	̃i j

2
(−{σ †

i σ j, ρ} + 2σ jρσ
†
i ). (10)

The justification for the replacement lies in the consider-
ation of a slowly varying spectral density, where J(ω +
�) 	 J(ω) and J(ω + 	) 	 J(ω). Under these conditions,
every term in Eq. (2) with |ωi − ω j | < max{	i j,�i j} sat-
isfies 	i j (ωi ) 	 	i j (ω j ) 	 	̃i j and �i j (ωi ) 	 �i j (ω j ) 	 �̃i j

and the replacement is trivially precise. Conversely, when
|ωi − ω j | > max{	i j,�i j} the accuracy of the replacement

decreases, but the effect of these terms becomes negligible.
Consequently, the preciseness of the replacement is irrelevant
and these terms can even be discarded through secularization.

After the replacement, Eq. (10) is an LME if (i) the energy
correction � = ∑

i j �̃i jσ
†
i σ j is Hermitian and (ii) the Kos-

sakowski matrix 	̃i j is positive semidefinite. In the examples
from [22] both conditions were automatically satisfied. As for
the system explored in [30], the non-Hermitian terms were
removed through an accurate secularization and the geometric
symmetry of the setup implied a positive-semidefinite Kos-
sakowski matrix. In general, however, these requirements are
not guaranteed and an LME is not obtained. In the following,
we elaborate on strategies to address both problems.

III. NON-HERMITICITY

Here we discuss how non-Hermiticity can appear in the
energy correction Hamiltonian and propose two solutions that
ensure Hermiticity.

A. Description of the problem

As mentioned above, for the master equation to be an LME,
� = ∑

i j �̃i jσ
†
i σ j must be Hermitian, which is automatically

fulfilled when �̃ is Hermitian. In principle, it is possible for
� to be Hermitian even when �̃ is not, but this would require
fortuitous cancellations between the system and environment
properties that do not occur in general. Thus, we focus on
approaches to convert �̃ into a Hermitian matrix.

To illustrate the origin of non-Hermitian terms in �, we
consider the same three-level system coupled to a Lorentzian
bath described before (cf. Fig. 2). Despite its simplicity, this
model is enough to reveal the source of non-Hermitian terms
in �. Simultaneously, the corresponding Kossakowski matrix
is positive semidefinite, due to the absence of environment
cross correlations, allowing us to isolate the non-Hermiticity.
According to Eq. (10), the energy shift for this system is

� =
⎛
⎝�̃1′1′ + �̃2′2′ 0 0

0 �̃11 �̃12

0 �̃21 �̃22

⎞
⎠, (11)

where �̃12 = �̃21 = √
λ(ω1)

√
λ(ω2). Notice that λ(ω)

changes sign at ωM . Thus, if ω1 and ω2 lie on opposite sides
of ωM , then �̃12 = �̃21 = i|�̃12| and � is non-Hermitian.

The situation described above illustrates how non-
Hermiticity can arise in the energy correction operator.
When this occurs, Eq. (10) is not truly an LME and
the positivity of ρ is no longer guaranteed. Not only
that, but the Hermiticity of ρ is also not preserved and
non-negligible imaginary contributions arise in the pop-
ulations. As an example, we show in Fig. 3 the pre-
diction of Eq. (10), with parameters set to h̄ωM = 1 eV,
h̄κ = 0.1 eV, g = κ , and ωi = ωM + δi, choosing δ2 = −δ1

= δ and |ψ (0)〉 = |1〉 as the initial state. In Fig. 3(a) we depict
the phase of the complex population of |1〉. While it starts
at zero for short timescales, it undergoes rapid changes and
displays multiple complete turns. Thus, the Hermiticity of ρ is
quickly compromised due to the off-diagonal non-Hermitian
couplings described above. In Figs. 3(b) and 3(c) we plot
the population of state |2〉, showing only its real part, as the

062225-4



RECOVERING AN ACCURATE LINDBLAD EQUATION FROM … PHYSICAL REVIEW A 109, 062225 (2024)

FIG. 3. Breakdown of the g� − g	 prescription of [22]. (a) Non-
trivial complex phase of the population of |1〉 owing to the loss of
Hermiticity of Eq. (11). (b) Population of |2〉 obtained with Eq. (10)
with ω1 = ωM + δ1, ω2 = ωM + δ2, and δ = −δ1 = δ2 (very close
to being real). Blue and red represent positive and negative values,
respectively. (c) Population of |2〉 at δ = κ . The blue region indicates
negative, unphysical population.

imaginary part is negligible. Nevertheless, Fig. 3(b) shows
positive and negative populations in red and blue, respectively,
and the negative portions are definitely not negligible. In
Fig. 3(c) a cut at δ = κ accentuates the negativity, indicated
with the blue region.

Despite the observations in Fig. 3, note that these de-
ficiencies do not necessarily mean that Eq. (10) with a
non-Hermitian � is always inaccurate. Similarly to the BRE,
it can remain precise if the underlying approximations are
reasonable [19]. The parameters have indeed been chosen to
highlight the difficulties that can arise from Eq. (10). Still, it
remains true that the attempt at a solution to the BRE problems
has led to a new, arguably worse issue: Populations become
complex rather than simply negative. In the following sec-
tions we describe and compare several alternatives designed
to eliminate the non-Hermiticity problem.

B. Approach 1: Degenerate levels

It was argued in the Introduction that the off-diagonal terms
are relevant when the energetic difference between states |1〉
and |2〉 in Fig. 2 is comparable to the energy corrections. For
that reason, a possible solution to the Hermiticity problem
would be to ignore the energy difference between these states
while deriving the master equation and then add it back as
a correction afterward. In the illustrative system of Fig. 2,

this corresponds to computing the parameters in the master
equation as if ω1 = ω2 = ω̄ = (ω1 + ω2)/2 and then adding
the actual energy difference to the effective Hamiltonian. We
follow up on the notation introduced previously and refer to
this method as d� − d	, as the close-lying energy levels of
the system are assumed to be degenerate from the start in the
master equation derivation. With this procedure, the energy
shift is

�d =
⎛
⎝2λ(−ω̄) 0 0

0 λ(ω̄) λ(ω̄)
0 λ(ω̄) λ(ω̄)

⎞
⎠ (12)

and, since λ(ω̄) is real, �d is automatically Hermitian. This
replacement is numerically accurate when J (ω2) and J (ω1) 	
J (ω̄). However, we do not expect it to perform very well
whenever either J (ω2) or J (ω1) 
	 J (ω̄) because, although
�d

12 becomes negligible, the dissipative terms are also eval-
uated at ω̄, significantly different from ω1 and ω2, potentially
leading to inaccurate decay rates.

This procedure is easily applicable to systems exhibiting
clearly structured energy spectra with several narrow sets of
levels, because one single frequency can be reliably assigned
to each set. Within each set, the off-diagonal couplings would
resemble the Hermitian expression from Eq. (12), and al-
though the couplings between different sets would still be
susceptible to the non-Hermiticity issue, these can in princi-
ple be eliminated through secularization. However, for more
complicated level structures, where the energy levels are not
distinctly arranged in narrow sets, assigning the same fre-
quency to several states becomes a less straightforward task.
Exquisite care must then be taken in order to avoid losing
pertinent information about the frequency dependence of J
and λ, which impacts the precise values of the energy shifts
and decay rates. Additionally, this means that in general the
procedure has to be performed manually, or at least under
strict human supervision.

C. Approach 2: Arithmetic mean

We devise a second approach for addressing the non-
Hermitian couplings that involves replacing the geometric
mean discussed in Sec. II B with the arithmetic mean solely
in the energy correction while keeping the geometric mean in
the decay terms:

�̃i j = �i j (ωi ) + �i j (ω j )

2
, (13a)

	̃i j = √
	i j (ωi )

√
	i j (ω j ). (13b)

Accordingly, we designate this prescription as a� − g	.
This adjustment allows for the refactoring of the energy shift
terms in Eq. (2) into a commutator. It is worth noting that if
the arithmetic mean were used in the decay terms as well, the
Kossakowski matrix for the system in Fig. 2 would give rise
to a negative decay rate, approximately given by

π (J+ −
√

J2+ + J2−) < 0, (14)

where J± = J (ω1) ± J (ω2). Similar features appear also in
other, more complex systems.
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FIG. 4. Population of the state |2〉 calculated with the (a) exact, (b) a� − g	, and (c) d� − d	 methods, as a function of δ. (d) The
d� − nd� method, designed to fix the d� − d	 method by keeping the full information of the system frequencies. The gray dashed line is
proportional to 1/J (ωM + δ), indicating the lifetime of |2〉 when the excited states do not interfere. The parameters are h̄ωM = 1 eV, h̄κ =
0.1 eV, g = 0.1κ , ω1 = ωM + δ1, and ω2 = ωM + δ2, with −δ1 = δ2 = δ. The initial state is |ψ (0)〉 = (|1〉 − |2〉)/

√
2.

With this option, the energy correction for the three-level
system becomes

�a =

⎛
⎜⎝

λ(−ω1) + λ(−ω2) 0 0

0 λ(ω1) λ(ω1 )+λ(ω2 )
2

0 λ(ω1 )+λ(ω2 )
2 λ(ω2)

⎞
⎟⎠.

(15)

Unlike the previous fix, the arithmetic mean naturally pre-
serves the information about the dependence of J and λ with
ω. Hence, this solution to the non-Hermiticity problem is
more straightforwardly applicable to more complex systems.
We finish by noting that this approach yields an expression
for � similar to the equivalent term in the second line of
Eq. (6), an alternative form of the BRE. However, in that
equation, the �i j functions appear together with an additional
i[	i j (ωi ) − 	i j (ω j )]/4.

D. Accuracy comparison

In this section we evaluate the dynamics of the three-
level system depicted in Fig. 2 using several methods. We
then compare and identify the best option among the ap-
proaches from Secs. III B and III C, referred to as d� − d	

and a� − g	, respectively. Additionally, we include an exact
method that exploits the well-known equivalence between a
Lorentzian bath and a single bosonic mode, a, coupled to a flat
(Markovian) environment, from the perspective of the system
[32]. Therefore, the system plus mode system can be exactly
described through

ρ̇ = − i

h̄
[H + gd (a + a†) + h̄ωMa†a, ρ]

+ κ

2
(−{a†a, ρ} + 2aρa†), (16a)

d =
2∑

i=1

(σi + σ
†
i ), (16b)

where the parameters are defined as in Eqs. (7) and (9), and
the system bath Hamiltonian from Eq. (8) has been replaced
with the simpler coupling to a single mode. From Eq. (16a) we

may obtain the reduced system density matrix by tracing over
the bosonic degree of freedom. The approximate methods can
then be compared to the exact solution.

For the comparison, we choose the following param-
eters: h̄ωM = 1 eV, h̄κ = 0.1 eV, g = 0.1κ , ω1 = ωM + δ1,
and ω2 = ωM + δ2, with −δ1 = δ2 = δ. The initial state is
|ψ (0)〉 = (|1〉 − |2〉)/

√
2. We show the population of state |2〉

as calculated with the exact, a� − g	, and d� − d	 methods
in Figs. 4(a)–4(c), respectively. When the states |1〉 and |2〉
are close to degeneracy (δ/κ ≈ 0), both the a� − g	 and
d� − d	 methods agree with the exact result, as expected.
However, as δ/κ increases, the exact and a� − g	 colormaps
reveal a gradual and clear increase in the decay timescale,
marked with dashed lines for ease of comparison between
plots. In contrast, this effect is not present in the d� − d	

method.
It should be noted that the reason for the disparity of

the d� − d	 method compared to the first two lies in the
decay terms, rather than in �. This is because the d� − d	

implementation approximates the levels as degenerate during
the full derivation of the master equation and only afterward
includes the finer structures. Hence, both λ and J are evaluated
at ω̄ and, with the parameters used above, the decay rate far
from resonance is still given by 2πJ (ωM ) in Fig. 4(c), while
it becomes smaller for increasing values of δ/κ in Figs. 4(a)
and 4(b). This can be corrected by not replacing ω1 and ω2

with ω̄ in the decay part, as shown in Fig. 4(d), where the
same dependence of the system’s lifetime on δ/κ is observed.
With our notation, we can term this mixed approach d� − g	.
Judging from Fig. 4(d), we conclude that, in the situation
considered here, both a� − g	 and d� − g	 work well. Still,
the energy shift in d� − g	 assumes no natural detuning
between the excited states, while in reality such a frequency
difference is nonzero. Therefore, it could be the case that
some concrete scenarios might compromise the accuracy of
d� − g	 compared to a� − g	, where the detuning between
excited states is automatically included with no additional
consideration, thus ensuring a more robust description of the
emitter’s dynamics.

Considering these findings, we conclude that the a� −
g	 approach from Sec. III C provides the best solution. It
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successfully reproduces the exact solution in the weak-
coupling regime, addresses the non-Hermiticity issue asso-
ciated with the geometric mean prescription, and seamlessly
incorporates the energetic features of the system without ad-
ditional supervision. This makes the a� − g	 approach a
robust and effective method for describing the energy shift of
complex quantum systems. We have also tried several other
options, such as manually ensuring that �̃i j = �̃∗

ji by arbitrar-
ily conjugating one of them. For conciseness, these methods
are not discussed here, as they are worse and more arbitrary
than the arithmetic mean procedure.

IV. NONPOSITIVE SEMIDEFINITENESS

We continue our analysis by clarifying the situations
that ensure the positive semidefiniteness of the Kossakowski
matrix. Notably, in the case of a single system operator
A coupling to one bath operator B such that Hsb = AB,
the ensuing Kossakowski matrix is positive semidefinite by
construction, as demonstrated in [22]. Indeed, the proce-
dure outlined in Sec. II B yields a dissipative term of the
form 1

2 (−{�†�, ρ} + 2�ρ�†), with a single collective decay
operator � = ∑

j A j
√

γ (ω j )σ j . Then the only nonzero eigen-
value of the Kossakowski matrix is a positive 1.

Nevertheless, the scenario becomes more intricate when
allowing for multiple system-bath interaction terms Hsb =∑

α AαBα , with the potential appearance of bath cross corre-
lations, i.e., off-diagonal elements in Eq. (4a). In this case,
the Kossakowski matrix after the geometric mean replacement
can often be nonpositive semidefinite. However, specific con-
ditions can guarantee non-negative eigenvalues. For instance,
if the cross correlations vanish and each system transition
involves only one of the Aα operators, the situation reduces to
a sum over several single system-bath interactions. These re-
quirements can only be met in very particular configurations,
like the one considered in [30], which can be a significant
limitation.

In the following, we perform a structured study of the size
and impact of the negative eigenvalues of the Kossakowski
matrix. First, we focus our analysis on a specific system of
small size and observe that, with the prescription a� − g	
from earlier, the negative eigenvalues can be discarded with-
out significant accuracy loss. Next we examine a large sample
of randomly generated test systems to confirm the previous
conclusion that the negative eigenvalues can be neglected. At
the moment, we do not have a rigorous justification as to
why taking the geometric mean should imply that, but the
statistical study seems to confirm it to be the case.

A. Particular case

Here we generate a particular system and explore the
effectiveness of various approaches aimed at achieving the
positivity of the corresponding Kossakowski matrix. The sys-
tem is generated according to the following procedure. We
consider a generic L-level system coupled to the environment
through M interaction terms such that Hsb = ∑M

α=1 AαBα . The
spectral density of the bath is then represented as a positive-
semidefinite M × M matrix-valued function. To describe the
properties of the environment, we exploit the equivalence

between a generic bath and a particular set of N coupled and
lossy modes aβ , as discussed in [33,34]. This methodology
is a generalization of the one employed in Sec. III D, where
a single discrete and lossy mode was enough to capture the
full effect of a Lorentzian bath on the emitter and the sim-
ple Eq. (16a) yielded the exact dynamics. By allowing the
modes to increase in number and be coupled to each other,
more complex spectral densities can be represented with just
a few discrete modes. It can then be shown that the associated
spectral density is

J(ω) = h̄

π
g · Im[(h − ω)−1] · gT , (17a)

where particular matrices h (N × N) and g (M × N), along
with an integer N , can be chosen to accurately fit any spectral
density. The corresponding Lamb shift integral is given by

λ(ω) = −h̄g · Re[(h − ω)−1] · gT . (17b)

More specifically, hββ = �ββ − iκβ/2 represents the fre-
quencies and losses of the modes, hβγ = �βγ contains the
couplings between discrete modes, and gαβ determines the
coupling strength between the mode aβ and the system
through Aα . Additionally, using the results from [34], the exact
dynamics of the system is also available through

ρ̇sm = − i

h̄
[Hsm, ρsm]

+
N∑

β=1

κβ

2
(−{a†

βaβ, ρsm} + 2aβρsma†
β ), (18a)

Hsm = H +
N∑

βγ=1

h̄�βγ a†
βaγ +

M,N∑
αβ=1

h̄Aαgαβ (a†
β + aβ ),

(18b)

ρ = Trm(ρsm ), (18c)

where ρsm is the density matrix of the system and the discrete
modes.

Therefore, Eq. (18) provides a natural benchmark for any
perturbative equation we propose.

For the analysis of the specific system, we set the number
of levels, interaction terms, and discrete modes to L = 3,
M = 2, and N = 2, respectively; with any simpler choice,
the geometric mean g	 yields a positive-semidefinite Kos-
sakowski matrix. In Figs. 5(a) and 5(b) we schematically show
the energy structure of the system and the spectral functions of
the environment, produced with the method described above
with random parameters. The vertical dashed lines in Fig. 5(b)
represent all the possible transition energies in the system.
We then solve the dynamics of the particular system with
|ψ (0)〉 = (|1〉 + √

2|2〉)
√

3 as the initial state. To that end,
we employ seven methods, namely, exact, BRE, BRE(+),
a� − a	, a� − a	(+), a� − g	, and a� − g	(+). The
exact and BRE methods solve Eqs. (18) and (2), respectively.
As for the a� − a	 and a� − g	 methods, we take our
own advice from Sec. III D and represent the energy shift
always following the arithmetic mean prescription: �̃i j =
[�i j (ω j ) + �i j (ωi )]/2. The various approaches differ in the
procedure to obtain the Kossakowski matrix, i.e., the dissipa-
tive part. For the a� − a	 we take the arithmetic mean 	̃i j =
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FIG. 5. Particular case. (a) Scheme of the levels and interaction
operators. (b) Spectral density (red) and Lamb shift integral (blue).
The faint dashed lines represent the six different transition energies
present in the system. (c) Time evolution of the populations. (d) Time
evolution of the deviation with respect to the exact dynamics. The
dashed lines have been calculated with the full methods including
negative and positive eigenvalues and the dotted lines with their
positive counterparts.

[	i j (ω j ) + 	i j (ωi )]/2 and for the a� − g	 the geometric
mean 	̃i j = √

	i j (ω j )
√

	i j (ωi). Finally, all three approxi-
mate methods have a positive (+) counterpart, in which the
Kossakowski matrix is diagonalized, and the negative eigen-
values are discarded. As a consequence, the positive methods
are all genuine LMEs and the question is which of these, if
any, accurately represents the dynamics of the system.

In Figs. 5(c) and 5(d) we display the evolution of the
populations as obtained from the methods discussed above
and the deviation with respect to the exact result, respectively.

TABLE I. Negative and positive eigenvalues of the correspond-
ing Kossakowski matrices. We show only the four largest in absolute
value, out of the nine total eigenvalues for L = 3, rounded to the first
significant digit.

Eigenvalues (meV/h̄)

Method First Second · · · Eighth Ninth

BRE −5 −9 × 10−2 2 × 10−1 9
a� − a	 −2 −5 × 10−2 9 × 10−3 6
a� − g	 −5 × 10−2 −5 × 10−5 1 × 10−2 4

The deviation is obtained through the Frobenius norm of
the corresponding density matrices: ||ρexact (t ) − ρmethod(t )||F .
First, note that every full method including both positive and
negative eigenvalues of the Kossakowski matrix agrees with
the exact result, as expected in a sufficiently-weak-coupling
regime. Accordingly, the dashed lines lie all on top of each
other. Regarding the positive versions of the methods, there
are two sets of lines distinctly separate from the rest, con-
cretely, the ones corresponding to the BRE(+) and a� −
a	(+) methods. It can therefore be concluded that removing
the negative eigenvalues of the Kossakowski matrix yields
incorrect predictions for the BRE and the arithmetic mean.
However, rather remarkably, there is barely any difference
between the a� − g	 and a� − g	(+) methods. Thus, at
least in this particular case, it seems that the geometric mean
greatly reduces the effect of the negative eigenvalues of the
Kossakowski matrix. To be more explicit, we diagonalize the
Kossakowski matrices corresponding to the BRE, a� − a	,
and a� − g	 methods and present the most significant eigen-
values in ascending order (the first two and the last two) in
Table I. There columns 2 and 3 and columns 3 and 4 contain
the two largest negative and positive eigenvalues, respectively.
We observe a striking difference in the ratio between the
largest negative and positive eigenvalues, which is O(−1) for
both the BRE and a� − a	 methods but only O(−10−2) for
the a� − g	 approach. The smallness of the negative eigen-
values after performing the geometric mean procedure in the
dissipative part explains why their removal does not imply a
loss of accuracy from a� − g	 to a� − g	(+).

B. Statistical study

In this section we check whether the reduction of the
negative eigenvalues after the geometric mean procedure in
the Kossakowski matrix generalizes in a random sample
of systems. To that end, we again exploit Eqs. (17a) and
(17b) to generate a sample of 1000 systems and baths with
random parameters. More details can be found in the Ap-
pendix. Then, to assess the consistency of the size reduction
of the negative eigenvalues following the geometric mean
procedure, we diagonalize the resulting Kossakowski matrices
and plot the eigenvalue distributions in Fig. 6, where blue
and red histograms indicate negative and positive eigenvalues,
respectively. To homogenize the systems, we normalize the
eigenvalues to the largest positive one (9th) in these plots,
hence the dark red peak at 100. Notice that the dark blue
histograms close to −100 in Figs. 6(a) and 6(b) indicate the
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FIG. 6. Distribution of the most significant eigenvalues of the
Kossakowski matrix, obtained with the (a) BRE, (b) a� − a	, and
(c) a� − g	 methods. Blue and red histograms represent negative
and positive eigenvalues, respectively. Each eigenvalue is specified
by the shade of the color. The horizontal axes are split along the
middle of each plot (vertical dotted line) and display a negative or
positive logarithmic scale.

presence of large negative eigenvalues for the BRE and a� −
a	 methods. However, rather remarkably, the histogram cor-
responding to the first eigenvalue in Fig. 6(c) does not cluster
close to −100, but around −10−3. This is in agreement with
the previous observation that the geometric mean significantly
reduces the negative eigenvalues. Therefore, Fig. 6 supports
the conclusion that removing the negative eigenvalues after
the geometric mean procedure, and thus reaching an LME,
should not impact the accuracy of the QME. Incidentally, we
also remark here that the removal of the negative eigenvalues
is known to yield the closest symmetric positive-semidefinite
matrix [35].

In order to gain information relative to the breakdown of
the equations due to the onset of the strong-coupling regime,
we introduce a numerical factor in the spectral functions to
artificially scale up the interaction for each random system
instance, spanning a range of several orders of magnitude.
We then solve the dynamics with each method and evaluate
the deviation from the exact evolution in the whole sample.
For the sake of thoroughly exploring the parameter space, we
also randomly choose the initial state |ψ (0)〉 for each system
instance. The deviation is measured with the time-averaged
Frobenius norm of the difference between the density matri-
ces:

�method = 1

T

∫ T

0
dt‖ρexact (t ) − ρmethod(t )‖F . (19)

FIG. 7. Statistical average over the random systems of the time-
averaged deviation of the dynamics [Eq. (19)] as a function of the
coupling strength factor. The solid lines refer to the full methods,
keeping the negative eigenvalues, and the dotted lines represent
the positive methods. The horizontal dotted line indicates the point
beyond which any method undoubtedly fails to reproduce the exact
dynamics.

In practice, however, it is more sensible to study the statis-
tical properties of ln �method, to account for the skewness of
�method, which is due to �method being small but always pos-
itive. The results are condensed in Fig. 7, where the average
deviation is exp(〈ln �method〉) or, equivalently, the geometric
mean. The first main piece of information presented there is
that the full methods (solid lines) all converge to the exact re-
sult when the coupling strength becomes smaller, as expected.
We show with the dotted lines that removing the negative
eigenvalues of the Kossakowski matrix from the BRE and
a� − a	 approaches results in the stabilization of the average
deviation around 0.1, rather than convergence to the exact so-
lution. Hence, we observe that the importance of the negative
eigenvalues is not really dependent on the coupling strength
in those two methods. Strikingly, notice that the dotted line
corresponding to the a� − g	(+) method follows closely the
deviation of the full methods. Therefore, the effect of the neg-
ative eigenvalues is small enough in the a� − g	 method that
they can be safely neglected, a procedure that automatically
yields a genuine LME. The lines in Fig. 7 imply that we
have found an approximate LME that works accurately in the
same coupling regime as the BRE, with three big advantages.
First, our a� − g	(+) master equation is always free from
unphysical effects. Second, because the a� − g	(+) master
equation is a true LME, it is a completely positive map, which
means that its lifted dynamics is positive for any additional
subsystem too. In this regard, a reasonable question is whether
the lifted dynamics can be used to gain more information
about the accuracy of various LME-restoring approaches.
Doing this comparison, we find that there is no significant
difference between simulating a simple system or an extended
one, with respect to the average deviation. We therefore do
not show these results explicitly. The last advantage is that the
a� − g	(+) QME admits a quantum trajectory interpretation
of the dynamics with non-negative jump probabilities.
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We end the discussion with two last comments regarding
the statistical distribution of the deviations. First, from our
large sample size we can calculate the standard deviation
of the distribution of ln �method. Doing so yields a standard
deviation of approximately a quarter of an order of magni-
tude quite consistently across different methods and coupling
strengths. This means that the lines in Fig. 7 have an approx-
imate width of half an order of magnitude. We have omitted
the dispersion measurement in Fig. 7, as it did not provide
much insight and only made the figure harder to interpret.
Second, from Fig. 7 it may seem as though all approximate
master equations break down equally when the strength factor
grows. This however is not exactly true. Taking the logarithm
before averaging the data camouflages the fact that, in some
of the 1000 systems, the BRE and a� − a	 methods return
divergent populations. The number of these pathological sys-
tems increases with the strength factor and is linked to the
nonpositivity of their Kossakowski matrices. In that sense,
the BRE and a� − a	 methods can suffer from a worse
breakdown than the other methods. Although the a� − g	
approach could have the same problem, in the studied cou-
pling regimes it does not, in line with the smallness of the
negative eigenvalues of its Kossakowski matrix. Of course,
true LMEs such as the one proposed here, a� − g	(+), have
a positive-semidefinite Kossakowski matrix and therefore are
completely free from these issues.

V. CONCLUSION

Our work shows that the methodology developed in [22]
and extended in [30] to derive an LME was not free of limita-
tions, which prevented the final equation from being a desired
LME in certain regimes. In particular, the Lamb shift Hamil-
tonian was susceptible to non-Hermiticity, leading to the loss
of the Hermiticity of the density matrix and accordingly to
complex populations. Additionally, the Kossakowski matrix
associated with the derived master equation exhibited non-
positive semidefiniteness, violating one of the assumptions of
Lindblad’s theorem, except under relatively simple configu-
rations. We resolve the Hermiticity concern by replacing the
geometric mean introduced in Sec. II B with an arithmetic
mean in the energy shift terms. Among various alternatives,
we highlight this approach due to its superior simplicity in
implementation. Regarding the nonpositive definiteness of the
Kossakowski matrix, we observe that while the geometric
mean replacement does not eliminate the negative eigenval-
ues, these become substantially smaller than those in the
original BRE and their impact on the dynamics is markedly

suppressed. Therefore, we adopt a pragmatic perspective and
propose the removal of the negative eigenvalues to satisfy
the assumptions of Lindblad’s theorem, after the geometric
mean replacement. This option is supported by the statistical
study performed in this work, as well as particular simulations
of larger systems not shown here for brevity. The combined
implementation of the solutions to both problems yields an ac-
curate and general LME that, akin to the BRE, maintains close
ties with the physical environment while simultaneously over-
coming the mathematical deficiencies inherent to the BRE and
the physical inadequacy of the secular approximation.

An implementation of the master equation developed here,
a� − g	(+), is available from [36].
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APPENDIX: RANDOM SYSTEM GENERATION DETAILS

The system and bath parameters were stochastically gen-
erated using the PYTHON library NUMPY (version 1.26.2).
We employed an initial seed equal to 1 234 321 for the
random number generator for reproducibility. For the initial
state, we generated both an amplitude and a phase for each
coefficient. To align the energy scales of the system and
discrete modes, the system energies h̄ωα were confined to
the interval [0.1 eV, 5.0 eV) and the mode energies h̄�ββ to
[0.3 eV, 2.0 eV). The mode couplings h̄�βγ were symmetric
and ranged from 0.0 to 1.0 eV; the rates h̄κβ were sampled
from the interval [0.2 eV, 0.5 eV). The transition operators
were constructed as Hermitian matrices with zeros on the
diagonal and values ranging from 0 to 1 elsewhere. Their
physical dimensions were absorbed in the spectral functions,
making the transition operators unitless. Concerning the cou-
plings, h̄gαβ were uniformly distributed within the interval
[0.0 meV, 1.0 meV), scaled by the square root of the strength
factor discussed in Sec. IV B. This parametrization ensured a
diverse set of systems for our analysis.
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