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Ionization of helium by slow antiproton impact: Total and differential cross sections

S. Borbély,1,* J. Feist,2,3,4 K. Tőkési,5 S. Nagele,4 L. Nagy,1 and J. Burgdörfer4,5
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We investigate theoretically the single and double ionization of the He atom by antiproton impact for projectile
energies ranging from 3 keV up to 1000 keV. We obtain accurate total cross sections by directly solving the fully
correlated two-electron time-dependent Schrödinger equation. The cross sections are in excellent agreement with
the available experimental data. We also present fully ab initio doubly differential data for single ionization at 10
and 100 keV impact energies and compare to classical-trajectory Monte Carlo calculations. In these differential
cross sections we identify the binary-encounter peak along with the anticusp minimum. Furthermore, we also
point out the importance of the postcollisional electron-projectile interaction at low antiproton energies, which
significantly suppresses electron emission in the forward direction.

DOI: 10.1103/PhysRevA.90.052706 PACS number(s): 34.50.Fa, 25.43.+t, 36.10.−k

I. INTRODUCTION

The collision of antiprotons with helium atoms is a
fundamental process in many-body atomic physics, attracting
considerable interest from both the experimental [1–6] and the-
oretical [6–11] side. This collision system is an ideal candidate
to study the four-body Coulomb problem because the number
of possible reaction channels is limited: the negative charge
of the projectile eliminates the electron-capture channel and,
because of the large mass of the projectile, rearrangement pro-
cesses involving capture of the antiproton by the helium atom
are strongly suppressed except at very low energies (∼eV).

Up to now, total cross sections for single and double ion-
ization have been measured for impact energies ranging from
3 keV up to a few MeV [1–4]. In addition, singly differential
cross sections were measured at 945 keV antiproton impact
energy [5]. At high impact energies (above 100 keV) the
single ionization (SI) process is predominantly a one-electron
process and can be fairly accurately described by using
single-active-electron (SAE) approaches [12–14]. However, at
lower antiproton impact energies, the simple SAE approaches
fail to account for the recent experimental data [3], indicating
that SI channels are influenced by two-electron dynamics
and correlation effects. This disagreement was, for the most
part, resolved by two-active-electron approaches [13–16],
which are in relatively good agreement with each other and
with the experimental data. Further improvements of the SI
and double ionization (DI) cross sections were achieved by
extensive ab initio calculations using the coupled-pseudostates
(CP) [10,17], the convergent close-coupling (CCC) [11], the
time-dependent close-coupling (TDCC) [7–9], and the time-
dependent density functional theory (TDDFT) [16,18] meth-
ods. However, discrepancies between the different approaches
remain and call for further investigations (for a comprehensive
overview of recent work, see the review by Kirchner and
Knudsen [6]).
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Except for the work by McGovern et al. [10,17] and by
Abdurakhmanov et al. [11], all recent calculations focused
on total ionization cross sections. However, for the design of
future differential cross-section measurements [6], predictions
for differential ionization cross sections are desirable. Con-
verged ab initio calculations for the latter pose a considerable
challenge. Motivated by residual discrepancies between differ-
ent theoretical SI total cross sections and between experiment
and theory, and by the need for differential cross sections we
performed accurate simulations for total single and double
ionization as well as for differential cross sections for single
ionization of helium by antiproton impact. We find excellent
agreement with experimental data for DI over the entire range
of investigated energies (3 keV � E � 1 MeV) and for SI
with the notable exception between 10 and 30 keV. The
differential cross sections prominently feature the anticusp
minimum and the binary-encounter peak. Atomic units are
used unless stated otherwise.

II. METHOD

We employ a semiclassical impact-parameter approach
where the antiproton moves on a classical straight-line trajec-
tory �R(t) = �b + �vpt . Here �b is the impact parameter and �vp is
the antiproton’s velocity. The validity of a classical-trajectory
description is well established for energies �keV [6,19]. The
de Broglie wavelength λp̄ = 2π

Mv
� 10−5 is negligibly small

compared to the atomic radius of helium. The approximation
of the classical trajectory by a straight line was checked by
employing classical-trajectory Monte Carlo (CTMC) simula-
tions, where we have calculated the distribution of antiproton
trajectories as a function of the scattering angle θa (i.e., the
deviation from the constant-velocity straight-line trajectory).
Even for the smallest antiproton energy considered here
(3 keV) we obtained a narrow distribution in the forward
direction with (θa)FWHM < 2◦. The validity of the straight-
line approximation was also independently verified by other
CTMC calculations [20,21].
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The quantum dynamics of the two active electrons is
initiated by the time-dependent Coulomb potential of the
incident projectile and is governed by the time-dependent
Schrödinger equation (TDSE) which we solve numerically by
using the time-dependent close-coupling (TDCC) method [7].
The present implementation is based on a numerical code
previously developed for the study of the interaction between
a He atom and linearly polarized intense ultrashort laser
pulses [22]. Because cylindrical symmetry and the total
magnetic quantum number M are not conserved in antiproton
impact, the previous five-dimensional description of the two-
electron problem has to be extended to the full six dimensions.
The fully correlated two-electron wave function is represented
as

�(�r1,�r2,t) =
∑

l1l2LM

RLM
l1l2

(r1,r2,t)

r1r2
ϒLM

l1l2
(�1,�2), (1)

expanded in terms of the symmetrized coupled spherical
harmonics

ϒLM
l1l2

(�1,�2) = 1√
2 + 2δM0

[
YLM

l1l2
(�1,�2)

+ (−1)l1+l2+L+MYL−M
l1l2

(�1,�2)
]
. (2)

We explicitly exploit in Eq. (2) the planar reflection symmetry
of the wave function relative to the collisional plane. The
radial partial waves RLM

l1l2
(r1,r2,t) are discretized by using

the finite element discrete variable representation (FEDVR)
method [23,24], where each radial coordinate is divided into
finite elements (FEs) and inside each FE the wave function
is represented on a local DVR basis with a corresponding
Gauss–Lobatto quadrature to ensure the continuity at the FE
boundaries.

For the temporal propagation of the wave function we use
the short iterative Lanczos (SIL) method [25,26] with adaptive
time-step control. The time evolution operator in each time step
is evaluated in the Krylov subspace generated by the repeated
action of the Hamiltonian Ĥ on the initial state �(t). The
ground state of helium was obtained by propagating an initial
trial wave function in negative imaginary time (t → −iτ ).

At each impact energy the convergence was carefully
checked with respect to the size and density of the FEDVR
grid, to the simulated length of the projectile trajectory, and
to the size of the angular basis. The radial grid density
required for convergence strongly depends on the projectile
energy: at 1 MeV, convergence is reached with a radial box
of 84 a.u. with 505 grid points (FEDVR order 6), while at
3 keV it required a radial box of 154 a.u. with 481 grid points
(order 7). In agreement with previous calculations [7–9,13,14],
we find total cross sections have converged for an angular basis
with size (L,M,l1,l2)max = (3,3,3,3). However, for reaching
convergence for differential cross sections we find that a much
larger basis size with (L,M,l1,l2)max = (5,5,5,5) is needed. In
all calculations the projectile trajectory was propagated from
Rz = −40 a.u. to Rz = 80 a.u. with the position of the helium
nucleus at Rz = 0.

For each impact parameter, the ionization probabilities are
extracted from the time-dependent wave function by using
the projection onto single and double continuum eigenstates.
Since the three- and four-body continuum eigenstates are not

known, we propagate our collision system until the fragments
have reached sufficiently large interparticle distances such that
electron-electron and electron-projectile interactions can be
neglected and final states can be approximated by bound and
uncorrelated single, and double continuum eigenstates of a free
He atom. Uncorrelated single continuum eigenstates are not
orthogonal to the excited bound states. This introduces a signif-
icant contamination into the SI spectrum. This contamination
is removed by subtracting the numerically obtained exact first
few singly excited eigenstates of He with the principal quantum
number of the excited electron n � 7 from the time-dependent
wave function before the calculation of the spectrum. The
ionization cross sections are obtained from the ionization
probabilities by performing the impact-parameter integration
numerically.

The present four-body CTMC approach is based on the
numerical solution of the classical Hamilton’s equations of
motion where all the particles participate in the collision
process. The four particles are the antiproton, the helium
nucleus, and the two electrons. All particles interact with
each other by Coulomb potentials except for the electron
pair. Neglecting the latter during the collision is important
to suppress unphysical spontaneous autoionization [27]. The
two independent, nonequivalent target electrons are initialized
according to the microcanonical ensembles with energies
corresponding to the first (0.903 a.u.) and second (2 a.u.)
ionization potentials, respectively [27]. The impact parameter
of the projectile as well as the positions and the velocities of the
electrons moving in the field of the target nucleus are randomly
selected. The initial conditions of the individual collisions
are chosen at sufficiently large internuclear separations such
that the interaction between the projectile and the target con-
stituents is negligible. In order to acquire sufficient statistics,
we typically propagate 108 trajectories for each set of collision
parameters. The exit channels are identified according to the
relative two-body energies determined at large distances (at
least 105 a.u.) from the collision center. This corresponds to
an energy resolution of about 10−5 a.u. While the four-body
CTMC approach lacks predictive quantitative power, it is very
helpful in identifying qualitative features in the differential
electron distribution and their underlying physical origin.

III. TOTAL IONIZATION CROSS SECTIONS

Total ionization cross section refers in the following to
the cross section integrated over all energies and angles of
the emitted electrons. All cross sections (differential and total)
discussed in the following are integrated over all impact param-
eters or, equivalently, all scattering angles θa of the antiproton.
At energies �3 keV the latter are, however, confined to a
narrow cone about the forward direction [(θa)FWHM � 2◦].

To benchmark our present calculations we first compare
with antiproton data for total ionization cross sections. In
Fig. 1 we compare the present TDCC calculations for the
total cross sections for SI at impact energies ranging from
3 keV up to 1 MeV with experimental data measured at
CERN by Andersen et al. (CERN90) [1], by Hvelplund et al.
(CERN94) [2], and by Knudsen et al. (CERN08) [3]. For
improved clarity we split the comparison with various other
theoretical results into three subsets. In Fig. 1(a) we compare
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FIG. 1. (Color online) Total ionization cross sections for the
single ionization of He by antiproton impact. The present TDCC
results are compared with the experimental data of Andersen et al. [1]
(CERN90), of Hvelplund et al. [2] (CERN94), and of Knudsen
et al. [3] (CERN08). In panel (a) we also compare with the TDDCC
results of Foster et al. [7,8] (TDCC-Foster) and of Guan et al. [9]
(TDCC-Guan). In panel (b) we compare with other fully correlated
theoretical calculations of Abradurakhmanov et al. [11] (CCC-MC)
and of Baxter et al. [18] (TDDFT). In panel (c) we compare
with calculations of McGovern et al. [10] (CP), the CDW-EIS
calculations [12], the frozen core CCC (CC-FC) calculations [11],
and our frozen-TDCC calculations (see text).

with the TDCC data of Foster et al. [7,8] and of Guan et al. [9],
in Fig. 1(b) with the CCC-MC data of Abdurakhmanov [11]
and the TDDFT data of Baxter et al. [18], and in Fig. 1(c) with
the the CP data of McGovern [10], the continuum distorted-
wave eikonal-initial-state (CDW-EIS) calculations [12], and
our frozen-TDCC calculations (explained below).

Our TDCC results show excellent agreement with the
experimental data at all studied antiproton impact energies
with the notable exception in the 10–30 keV interval where all
the experimental data are below our theoretical prediction. At
high energies above the Massey maximum [28] at ≈100 keV
we find the closest agreement with the recent TDDFT results
of Baxter et al. [18] and the CP results of McGovern et al. [10]
while the TDCC results of Refs. [7–9] appear to underestimate
the SI cross sections. The origin of the latter discrepancy
is not yet understood. At low energies below the Massey
maximum the different TDCC calculations give comparable
results, which is not surprising since they are all based on
TDCC and employ similar discretization and propagation
techniques. Comparing the TDCC with other calculations

including electron correlations at low energies, significant
discrepancies appear: the CCC-MC overestimate, while the
CP calculations underestimate the TDCC cross sections.

Turning now to the discrepancies of the present TDCC
results to experimental data in the energy interval 10 keV �
E � 30 keV we note that almost all ab initio calculations
[7–9,11,13–16] display comparable deviations. Notable ex-
ceptions are the CDW-EIS calculation of Fainstein et al. [12]
and partly the CP results of McGovern et al. [10]. Both the
CP and CDW-EIS methods have in common that they are
effective one-electron descriptions, either by invoking a single-
active-electron approximation, or by freezing one of two
electrons in the He+(1s) state. As also pointed out by Igarashi
et al. [13] and by Abdurakhmanov et al. [11], constraining the
dynamics of the second electron (or neglecting it altogether)
may lead to an underestimation of the total SI cross section.
Additionally, the rapid decrease of the ionization cross section
in the CDW-EIS approximation is likely a consequence of
the failure of the underlying perturbation approximation at
such low ion energies. We inquired into the influence of the
suppression of two-electron transitions by performing a TDCC
calculation in which we counted only SI events with the bound
electron found in the 1s state [frozen-TDCC in Fig. 1(c)]. The
total cross section is, indeed, significantly reduced, yielding,
most likely, fortuitously good agreement with the experimental
data between 10 and 30 keV but an underestimate at high
energies. Thus, the discrepancy of the experimental data with
the state-of-the art calculations in the range between 10 and
30 keV remains unresolved and suggests the need for further
experimental data in this energy region.

For double ionization (Fig. 2), the present TDCC total cross
sections are in excellent agreement with the experimental data
over the entire range of antiproton energies considered. The
experimental data consist of three sets of Andersen et al. [1]
(CERN90), Hvelplund et al. [2] (CERN94), and Knudsen
et al. [4] (CERN09). Also, the different TDCC calculations are
in close agreement with each other. The improved agreement
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FIG. 2. (Color online) Total ionization cross sections for the
double ionization of He by antiproton impact. Experimental data
of Andersen et al. [1] (CERN90), of Hvelplund et al. [2] (CERN94),
and of Knudsen et al. [4] (CERN09) are compared with the present
TDCC and other fully correlated theoretical calculations of Baxter
et al. [18] (TDDFT), of Foster et al. [7] (TDCC-Foster), and of Guan
et al. [9] (TDCC-Guan).
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compared to the SI case suggests that the extraction of total
double-ionization probabilities from the fully correlated two-
electron wave packet is less error prone than the extraction of
single-ionization probabilities. Unlike for SI, the discrepancy
to the TDDFT calculations [18] is somewhat larger, which may
be connected to the difficulty to accurately extract two-particle
observables such as DI from a theory that treats only the
reduced one-particle density. Clearly, compared to a TDCC
approach the TDDFT model has the advantage of a much
lower computational cost.

IV. DIFFERENTIAL IONIZATION CROSS SECTION

We now turn to the doubly differential (DDCS) and the
singly differential (SDCS) cross sections for single ionization
of helium. The DDCS can be equivalently expressed in terms
of parallel (p‖) and perpendicular (p⊥) electron components
relative to the incoming beam direction (v̂p), σ SI(p‖,p⊥), or
as energy and angle differential cross section σ SI(Ee,θ ). They
are related to the total SI cross section by

σ SI =
∫ ∞

−∞
dp‖

∫ ∞

0
dp⊥σ SI(p‖,p⊥)

=
∫ ∞

0
dEe

∫ π

0
dθ sin(θ )σ SI(Ee,θ ). (3)

In Fig. 3 we compare the DDCS σ SI(p‖,p⊥) calculated by the
present TDCC method and by the classical CTMC simulations.
We find good qualitative agreement between the TDCC (first
row) and CTMC (second row) results. In both models, the
differential cross sections display two distinct features. First,
at both impact energies the momentum distribution of the

ionized electrons closely follows the binary-encounter ridge
(indicated by the half circles) described by the 2mevp cos(θ )
law of the classical binary-encounter model [29]. Here me is
the electron mass, vp is the projectile velocity, and θ is the
electron ejection angle measured form the projectile impact
direction. In the binary-encounter model (also referred to as
the elastic-scattering model) the ionization process is treated
as the elastic scattering of the target electrons at the incoming
projectile. Thus, the electrons are emitted with maximum
probability when their parallel (v‖) and perpendicular (v⊥)
velocity components fulfill the relation

v2
⊥ + (vp − v‖)2 = v2

p. (4)

In Eq. (4) the velocity distribution of the target electron (the
Compton profile) is neglected. Taking the latter into account
yields a velocity distribution centered around Eq. (4). Second,
the anticusp [30] is clearly observable as a deep minimum
in the forward direction (p⊥ = 0, p‖ > 0) when the electron
velocity v‖(= p‖) matches that of the antiproton (vp = v‖).
For impact energies at and above the Massey maximum
(100 keV), similar structures were previously observed by
Tőkési et al. [31] using CTMC and CDW-EIS single-active-
electron calculations. At high projectile impact energies
the SI ionization is predominantly a single-electron process
and the high projectile velocity ensures the validity of the
perturbative CDW-EIS approach. The mechanism underlying
the formation of the anticusp is simple: the electrons are
repelled from the vicinity of the negatively charged projectile
by the strong postcollisional Coulomb repulsion. This effect is
complementary to the formation of a cusp due to the attractive
final-state interactions between the outgoing electron and the
positively charged projectile, first observed in the proton-He
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FIG. 3. (Color online) Doubly differential cross section (Mb/a.u.2) for SI as a function of the parallel (p‖) and perpendicular (p⊥)
momentum components of the ejected electron. (a), (b) TDCC and (c), (d) CTMC calculations are compared at (a), (c) 10 keV and (b), (d) 100
keV antiproton energies. Both models show the characteristic features of the cross sections with the deep anticusp minima around the projectile
velocity and the distribution of the continuum electrons around the binary-encounter ridge (half circles); see text.
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collisions [32–34]. Both are controlled by the Gamow factor
for the two-body final state interaction [31]

G(v⊥,v‖) = 2π |Zp|√
v2

⊥ + (v‖ − vp)2

× e

−2π |Zp |√
v2⊥+(v‖−vp )2 (Zp < 0, repulsive), (5a)

G(v⊥,v‖) = 2π |Zp|√
v2

⊥ + (v‖ − vp)2
(Zp > 0, attractive), (5b)

where Zp is the charge of the projectile. Equation (5) follows
from the low-energy limit normalization factor of the two-body
Coulomb continuum function [35,36].

The presence of such localized structures in momentum
space displaced from the origin raises the question of the
convergence of the DDCS in a truncated two-electron angular
basis. In order to obtain the Gamow factor in the truncated
angular basis we expand the modulus of the normalization
factor of the Coulomb continuum function

√
G(v⊥,v‖),

√
G(v⊥,v‖) =

∞∑
l=0

g(v,l)Ylm=0(θ,φ = 0), (6)

where v is the electron velocity and θ,φ are the ejection
angles. By using the expansion coefficients g(v,l), we obtain
the Gamow factor in the truncated basis as

G(v⊥,v‖,lmax) =
[

lmax∑
l=0

g (v,l) Ylm=0 (θ,φ = 0)

]2

. (7)

Figure 4 presents cuts along the v⊥ = 0 and the v‖ = vp

planes of the Gamow factor in the truncated angular basis for
different maximum angular momenta lmax for 10 and 100 keV
projectile energies. While at low energies the convergence
to the Gamow factor is rapid and lmax = 1 is sufficient, at
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FIG. 4. (Color online) The Gamow factor in the truncated angu-
lar basis with maximum angular momentum lmax for 10 keV (first
row) and 100 keV (second row) projectile velocities and cuts along
(first column) and perpendicular (second column) to the projectile
velocity.

higher energies (100 keV) the structure is so steep that, at the
rapidly varying flanks, even lmax = 3 is not sufficient to reach
convergence. With lmax = 5 employed in the present TDCC
calculation, the Gamow factor in the truncated angular basis
coincides with the exact expression within the resolution of
the plot. This indicates that our angular basis with lmax = 5
maximum angular momentum is well suited to represent the
anticusp. The width in momentum space of the anticusp
in the DDCS (Fig. 3) is large at both antiproton energies
studied because the continuum electron is repelled in a large
region around the vectorial momentum of the antiproton
projectile. At 100 keV projectile energy, where the separation
between the anticusp minimum and the binary-encounter ridge
is large (vp ≈ 2 a.u.), the formation of the anticusp does
not significantly influence the electron distribution around
the binary-encounter ridge. In contrast, at 10 keV projectile
energy (vp ≈ 0.63 a.u.) the anticusp “cuts” into the binary-
encounter ridge and “pushes” the ionized electrons out to larger
velocities and suppresses emission in the forward direction.
In a simple classical picture, the slow projectile facilitates
enhanced postcollisional interaction and momentum transfer
to the ionized electron. We note that the anticusp is slightly
more pronounced in the CTMC calculations than in the TDCC
calculations. This effect, only observable on the logarithmic
scale (Fig. 3), most likely results from two contributions:
for one, exponentially small but finite values of the Gamow
factor [Eq. (5a)] represent the tunneling into the classically
forbidden regime in coordinate space which, in turn, leads to
the suppression of near equivelocity electrons in momentum
space. In classical mechanics, the corresponding region in
coordinate space is strictly forbidden, translating into a more
pronounced hole in momentum space. Second, the quantum
calculation may not have sufficiently converged to fully
resolve the exponentially suppressed ionization probability
when the propagation is terminated at RZ = 80 a.u. and the
residual final-state interaction with the projectile at even larger
projectile-target separations is not accounted for.

The singly differential cross section as a function of the
emission angle,

σ SI(θ ) =
∫ ∞

0
dEσ SI(E,θ ), (8)

displays traces of the anticusp in terms of a pronounced
minimum near θ = 0◦, and a maximum in the backward
direction θ = 180◦ (Fig. 5). The latter reflects the fact that,
in the backward direction, the low-energy ionization spectrum
is least affected by the anticusp. In contrast, in the forward
direction the electron emission is strongly influenced by
the antiproton energy (i.e., by the position of the anticusp).
At 100 keV a large fraction of electrons is emitted in the
forward direction (see the peak at θ � 60◦), which according
to Fig. 3(b) are high-energy electrons emitted around the
binary-encounter ridge. By lowering the antiproton energy to
10 keV, we observe a significant reduction in the emission
of these high-energy forward electrons, which can be also
observed in Fig. 3(a) and is the result of the overlap between
the binary-encounter ridge and the anticusp minimum. The
p + He system appears therefore as a prime candidate
to observe the anticusp, even in SDCS. By comparison, in
e + He collisions this feature is largely obscured since the
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postcollision energy spread of the light projectile smears out
the anticusp. For the high projectile energy (100 keV) the
binary-encounter ridge near 60° becomes clearly visible.

Since singly differential cross sections may become acces-
sible when future p facilities with larger beam currents come
into operation, we also investigate the energy-differential cross
section

σ SI(Ee) = 2π

∫ θmax

0
dθ sin(θ )σ SI(Ee,θ ) (9)

integrated over all angles within a forward cone up to θmax

(Fig. 6). For easier comparison, the SDCSs are normalized
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FIG. 6. (Color online) Singly differential cross sections σ SI(Ee)
integrated over a forward cone with cone angle θmax at 10 keV (upper)
and 100 keV (lower) antiproton energies. For an easier comparison,
the cross sections were normalized to the maximum of the SDCS at
θmax = 30◦. The wiggles in the 10 keV differential cross section are
caused by partially resolved Beutler-Fano resonances due to doubly
excited states which are excited by the projectile; see text.

to the maximum of the θmax = 30◦ results for both 10 and
100 keV antiproton energy. At low projectile energies, the
anticusp strongly suppresses the cross section near threshold
(Ee ≈ 0) and the SDCS features a strong peak at �30 eV. This
peak, extending from electron energies of 25 to 50 eV, also
contains noticeable “wiggles”. They signify the interference
between direct ionization and emission from autoionizing
states. Such Beutler–Fano resonances have been, indeed,
observed in p + He collisions [37]. It should be noted,
however, that the fine-scale structure of these interferences
can only be partially resolved by our numerical approach due
to the finite propagation time before the spectrum is calculated.
In order to fully resolve the Fano resonances integration
over much longer time intervals corresponding to projectile
distances Rz � 104 a.u. or alternative methods to calculate the
electron spectra [38–40] would be needed. This is currently
computationally not feasible for the problem at hand.

At high kinetic energies (100 keV) the anticusp causes
a valley separating the near-threshold electrons from the
binary-encounter peak. We note that the spectral shape (Fig. 6)
is only weakly dependent on θmax. This indicates that, in
future experiments, relatively large acceptance angles can
be employed without smearing out the anticusp feature. The
use of large electron collection angles will be advantageous
since, due to the low electron emission probability in the
forward direction and the low projectile flux, the rate of the
ionization events near the forward direction is expected to
be low. For example, while the shape of the energy differential
cross sections with θmax = 5◦ and θmax = 10◦ is the same,
the absolute magnitude of the θmax = 10◦ cross section is
nearly four times larger than that of the cross section for
θmax = 5◦.

V. CONCLUDING REMARKS

In this paper, we presented fully converged total cross
sections for the single and double ionization of helium
by antiproton impact over a wide range of impact en-
ergies calculated by directly solving the fully correlated
six-dimensional TDSE. The present results show a better
overall agreement with the experimental data [1–4] than other
ab initio calculations [7–11,13–16,18]. We have also presented
doubly differential cross sections for single ionization at 10
and 100 keV antiproton energies which were obtained by
considering the fully correlated two-electron dynamics of the
He + p collisional system. In order to reach convergence for
the differential cross section, a much larger angular basis set
than for total cross sections is required with partial waves up to
lmax = 5. For fully converged differential cross sections for DI,
an even larger angular basis would be needed. We identified
the presence of the anticusp and of the binary-encounter peak
in the differential cross section, illustrating the importance
of the postcollisional repulsion between the electron and the
projectile at low impact energies. As a result of this repulsion,
at 10 keV antiproton energy the electrons are “pushed” outside
the binary-encounter peak and their emission in the forward
direction is strongly suppressed. Finally, we showed that the
direct measurement of the anticusp in the forward direction
is possible even if the electrons are collected within a large
solid angle.
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