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Strong coupling between weakly guided semiconductor nanowire modes and an organic dye
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The light-matter coupling between electromagnetic modes guided by a semiconductor nanowire and excitonic
states of molecules localized in its surrounding media is studied from both classical and quantum perspectives,
with the aim of describing the strong-coupling regime. Weakly guided modes (bare photonic modes) are
found through a classical analysis, identifying those lowest-order modes presenting large electromagnetic fields
spreading outside the nanowire while preserving their robust guided behavior. Experimental fits of the dielectric
permittivity of an organic dye that exhibits excitonic states are used for realistic scenarios. A quantum model
properly confirms through an avoided mode crossing that the strong-coupling regime can be achieved for this
configuration, leading to Rabi splitting values above 100 meV. In addition, it is shown that the coupling strength
depends on the fraction of energy spread outside the nanowire, rather than on the mode field localization.
These results open up a new avenue towards strong-coupling phenomenology involving propagating modes in
nonabsorbing media.
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I. INTRODUCTION

Tailoring light-matter interaction at the nanoscale is the
foundation to improve, beyond unpredictable limits, the ef-
ficiency of previous devices and to develop novel applications
[1]. Among others, much effort has been undertaken to engi-
neer the emission properties between electronic energy states
of systems such as quantum dots, wells, and dye molecules,
through the coupling to optical systems such as cavities, pho-
tonic crystals, metallic interfaces, and semiconductor wires
[2–6]. Depending on the strength of the coupling between
the systems two distinct regimes, weak and strong, can be
established. In the weak regime, the spontaneous emission
rate is strongly affected by the electromagnetic local densities
of states, and it can be completely suppressed or enhanced by
several orders of magnitude [7–10], but the natural frequency
of the transition remains unaltered. Otherwise, the strong
regime is characterized by a coherent exchange of energy
between modes inducing new hybrid states with fascinating
properties that can be very different from those of the initial
systems [11–14].

Metallic nanostructures, through localized surface plas-
mons and surface plasmon polaritons, can effectively couple
to electronic transition states due to their optical near-field en-
hancement and confinement [15–21]. However, the presence
of losses limits their employment in transport applications.
In this regard, semiconductor nanowires overcome this issue
and allow for a long-range coupling through propagating
guided modes, being, in turn, a suitable platform to manage
the electromagnetic environment at optical frequencies at the
nanoscale [22]. They possess strong optical resonances and/or
guided modes that can be richly tuned by their geometrical
and/or material properties [22–24]. Nevertheless, they have

been mainly studied as optical cavities [25–28], in which
quantum dots or wells are placed inside the nanowire during
the growth process, constricting light propagation inside. In
fact, to the best of our knowledge, coupling nanowire propa-
gating modes to external excitonic media has not been studied
yet; this will presumably have a strong impact on exciton
transport applications [29–32].

In the present work, we study theoretically the appear-
ance of strong-coupling regimes in a system consisting of a
semiconductor nanowire embedded in an excitonic medium
by means of the interplay between guided modes and exci-
tonic states. Upon exploiting the evanescent tail of various
weakly guided modes outside the semiconductor nanowire,
analyzed in detail through classical electrodynamics (Sec. II),
coupling to excitonic modes of an organic dye surrounding
the nanowire is plausible. A quantum model is developed to
properly determine the polaritonic modes revealed through an
avoided crossing with expectedly large enough Rabi splittings
(Sec. III), showing that a strong-coupling regime can be
accomplished. The distribution of the energy is also affected
by the coupling (Sec. IV), going from pure photonic to
excitonic states, revealing the hybrid nature of the modes.
These entangled modes can be relevant for exciton transport
purposes, for which the half-life and propagation length must
be optimized (Sec. V).

II. WEAKLY GUIDED SEMICONDUCTOR
NANOWIRE MODES

We study the dispersion relation of polaritons arising
from the coupling between guided modes in semiconduc-
tor nanowires and excitons in a surrounding molecular
medium, through both classical and quantum models. We first
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discuss the classical electromagnetism approach, which is
based on solving Maxwell’s equations to obtain guided modes
in the system. Here, the molecular medium surrounding the
nanowire is modeled through its dielectric function, with
excitons manifesting as resonances leading to broad absorp-
tion bands. In the second step, we discuss a quantum model
in which the guided photonic modes of the semiconduc-
tor nanowires are quantized explicitly and coupled to dye
molecules modeled as point dipole emitters [19], with a level
structure and molecular density that reproduce the classical
dielectric function in the (linear) low-excitation limit.

For both procedures, the dispersion relation of the
nanowire modes must be solved within classical electromag-
netism. Cylindrical waveguides support propagating waves
(leaky and guided) with a dispersion relation determined by
[23,33]
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where R is the radius of the cylinder, ω is the angular fre-
quency, kz is the wave vector of the mode along the cylinder
axis, and m is an integer related to the azimuthal distributions
of the fields. Furthermore, Jm and Hm are the Bessel and
Hankel functions of the first kind, and the prime (′) denotes
the derivative with respect to the argument. The parameters
u = kcR and v = kbR are proportional to the transverse com-
ponent of the wave vector inside and outside the cylinder,
respectively, given by

k2
c = εcμc

ω2

c2
− k2

z , (2a)

k2
b = εbμb

ω2

c2
− k2

z , (2b)

where c is the speed of light in vacuum and εc, μc and εb,
μb are the electric permittivity and magnetic permeability
of the cylinder and background medium, respectively. In the
following, we use μc = μb = 1.

Recall that Bessel functions are transcendental with a
denumerable infinity of roots; thus, for each subindex m in
Eq. (1) several solutions are associated that can be denoted
by the subscript l . Hence, a pair index ml can be associated
with each guided mode. For guided modes with m = 0, the
field is symmetric about the cylinder axis, exhibiting a pure
transverse character, either electric (TE0l , Ez = Er = Hφ = 0)
or magnetic (TM0l , Hz = Hr = Eφ = 0). Hybrid modes arise
for m �= 0 (HEml ), where, in general, all field components are
nonzero and their phases accumulate a factor of 2πm in a
closed loop around the cylinder axis.

We first consider the “bare” modes of the nanowire
embedded in a host material without organic molecules.
We consider high-refractive-index, lossless semiconductor
nanowires; without loss of generality, a refractive index of
n = √

εc = 4.2 (close to those of GaAs, GaP, and AlSb in
the visible spectrum) is used for the nanowire, while the
background dielectric constant is set to εb = εh = 2.4 (typi-
cal for polymers such as polymethyl methacrylate (PMMA)
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FIG. 1. Bare system. Top: Dispersion relation ωR/c vs kzR for
the first three guided modes for εb = 2.4 and εc = 4.22. The gray-
shaded areas mark the spectral regions that will be studied later.
Bottom: Schematic of the waveguide system and norm of the electric
field profile of each mode at ωR/c = 0.55 and ωR/c = 0.78.

and polyvinyl acetate (PVAc)). The top left panel of Fig. 1
shows the dispersion relations (kzR vs ωR/c) of the first three
guided modes (HE11, TE01, TM01). In order to optimize the
coupling of these modes to molecules that will be placed in
the medium surrounding the nanowire, the mode should carry
as much energy as possible outside the wire. This implies that
the maximum coupling can be achieved with weakly guided
modes close to the light line since their field profiles possess
large evanescent tails outside the wire. To quantify this, the top
right panel of Fig. 1 shows Fext, defined as the fraction of mode
energy stored in the electric field outside the nanowire. As the
excitonic transitions of dye molecules correspond, to a very
good approximation, to electric dipole transitions, only the en-
ergy density from the electric field is taken into account. This
implies that Fext � 0.5 since for guided propagating modes
the energy is equally divided between electric and magnetic
fields. As can be seen, the cutoff-free HE11 mode at lower
frequencies and the (predominant) transverse magnetic modes
(for dielectric waveguides) close to their cutoff frequencies are
both candidates to exhibit strong-coupling phenomenology
Fext coming close to its maximum value of 0.5, and both
modes become more bounded as the normalized frequency
ωR/c increases. For transverse electric modes, the continuity
of all field components across the boundaries causes a flatter
dispersion relation and a larger confinement of the field inside
the nanowire. As we will see later, strong coupling can still
be achieved for TE modes, albeit with smaller Rabi splittings.
The bottom of Fig. 1 shows the electric field intensity profiles
for each mode at normalized frequencies ωR/c = 0.55 (where
only the HE11 mode exists) and ωR/c = 0.78, as well a pic-
torial representation of the system. The field profiles confirm
the information for Fext, showing large electromagnetic fields
outside the nanowire for the HE11 and TM01 modes. We note
that in the top panels of Fig. 1, the shaded areas mark the
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FIG. 2. Experimental value, fit to three Lorentzians and Voigt
fit of the dye dielectric function, both real parts (solid curves)
and imaginary parts (dashed curves). The shaded areas show the
contribution to the imaginary part of each Lorentzian peak. Note that
the Lorentzian fit overestimates losses at the low-frequency tail of
the first resonance.

spectral regions where the excitonic states are located for
nanowire diameters D = 2R = 90 nm (bottom shaded area)
and D = 120 and 130 nm (top shaded area), as will be studied
below.

After identifying the suitable bare photonic modes of
the system, we now include the effect of an organic dye
within the host medium, first staying within a classical de-
scription. Without loss of generality, we choose a rylene
dye [N,N′-Bis(2,6-diisopropylphenyl)-1,7- and -1,6-bis (2,6-
diisopropylphenoxy)-perylene-3,4:9,10-tetracarboximide] as
the dye molecule. This molecule has been used in various
experiments, achieving strong coupling as it shows little biex-
citon annihilation even at high densities and is well character-
ized [34,35]. Its measured electric permittivity (both real and
imaginary parts) is shown in Fig. 2 (blue lines), together with
a fit to a model dielectric function containing three Lorentzian
resonances to represent dye excitations (red lines):

ε(ω) = εh +
3∑

k=1

ak

ωk − iγk/2 − ω
, (3)

where εh is the background permittivity of the host medium
and ωk , γk , and ak are the frequency, decay rate, and amplitude
of each resonance, respectively. The fit parameter values are
given in Fig. 2 next to each peak. While the fit with Lorentzian
resonances is reasonably accurate, we note here that a nearly
perfect fit to the dielectric function can be achieved by using
Voigt profiles instead of Lorentzian ones. These correspond
to the convolution of Lorentzians with Gaussians and can
represent both homogeneous and inhomogeneous broaden-
ings, while only homogeneous broadening (i.e., losses and
dephasing) is accounted for through Lorentzian profiles.

As the physical results do not change significantly (we
have compared both approaches), for simplicity we use the
Lorentzian fit to calculate the dispersion relations. However,
since Lorentzians have much longer tails than seen in the
experimental absorption spectrum, this approximation signif-
icantly overestimates the losses at frequencies below about

2.1 eV. As we will see later, using the experimental dielectric
function (or, equivalently, the fit to Voigt profiles) leads to
significantly longer lifetimes and propagation lengths when
strong coupling “pushes” the polaritonic states away from the
molecular resonances.

The dispersion relation of the nanowires surrounded by
molecules, as calculated within a classical approach by solv-
ing Fig. 1, is shown in Fig. 3 for the three first modes
(solid curves) and for three different wire diameters, D =
90, 120, 130 nm, in order to analyze the coupling to different
modes. Here, the dot-dashed curves represent the dispersion
relations for the bare system, and the (horizontal) dotted
lines represent the resonance frequencies of the excitons. In
contrast to the bare-wire case, the lossy nature of the dye
resonances implies that the wave vector kz acquires an imagi-
nary part representing the propagation losses of the polariton
modes. The dispersion relations show significant energy shifts
close to the resonances of the molecule excitons and also
feature a back bending that can indicate a mode hybridization,
i.e., strong coupling or polariton formation, in the classical
calculations. As expected, the observed splitting is more
pronounced for bare photonic modes that are only weakly
confined within the nanowire, as well as for dye resonances
with larger associated transition dipole moments (i.e., larger
absorption amplitude an). However, it should be noted that
even the more strongly confined TE01 mode displays back
bending at the first excitonic resonance.

III. QUANTUM MODEL: RABI SPLITTINGS

The classical analysis shows bending bands in the
dispersion relation, which are an indicative signature of
a strongly coupled system in which avoided crossings arise
at resonances. Nonetheless, such behavior could be just
the result of the lossy medium itself [36]. In addition, the
real coupling is difficult to quantify without a representative
quantity such as the Rabi splitting, which has a direct meaning
in a quantum description but does not show up explicitly in
the classical calculation.

To construct a quantum model, we proceed in a manner
similar to that in [19]. We start by quantizing the guided
bare-nanowire modes by placing the system within a box of
length L along the wire axis and imposing periodic boundary
conditions in this direction. This restricts the allowed values
of the parallel momentum to kz = 2πn

L , with n ∈ Z. Since
the bare nanowire modes are lossless and confined in the
transverse direction, this also allows for their straightforward
quantization by imposing that the integrated energy density is
equal to the photon energy (see, e.g., the Appendix of [32]).
Defining the quantized field profile �E (�r) = C �E (r)eikzz+imφ in
cylindrical coordinates r, φ, z, where �E (r) is the electric field
profile of the mode with arbitrary normalization, gives

C =
√

h̄ω

2πLUrad
, (4)

where Urad is an integral over the electromagnetic energy
density of the mode, given by

Urad = 2
∫

ε(r)| �E (r)|2dr. (5)
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FIG. 3. Comparison between the classical electromagnetics calculation of mode dispersions (solid curves) from Eq. (1) with εc = 4.22 and
εc from the fit to Eq. (3) shown in Fig. 2 and the quantum model (dashed curves), Eq. (14), for three nanowire diameters, D = 90, 120, 130
nm. For clarity, only quantum modes with a significant photon fraction are shown (the parts not shown are basically straight lines at the bare
emitter frequencies, marked by dotted horizontal lines). For comparison, the bare dispersion relations are shown as dot-dashed curves [Eq. (1)
with εc = 4.22 and εc = 2.4].

Here, the factor of 2 accounts for the fact that equal energy is
stored in the magnetic field and in the electric field. Note that
we are treating only guided waveguide modes, for which Urad

is well defined as kb is purely imaginary and the mode profile
decays exponentially far away from the wire. In addition, there
is a continuum of freely propagating modes inside the light
cone, which we neglect as they do not play a large role in the
situations we study here (although they can have important
effects in specific cases [37]). The Hamiltonian of the system
within the rotating-wave approximation is then given by

H =
∑
n,m

ωc,nmâ†
nmânm +

∑
j

Hmol, j

+
∑
n,m, j

�Enm(�r j ) · �d j (μ̂−
j â†

nm + μ̂+
j ânm), (6)

where ânm is the bosonic annihilation operator corresponding
to the mth mode with parallel momentum kz = 2πn

L , while
Hmol, j and μ̂ j = μ̂+

j +μ̂−
j are the bare Hamiltonian and dipole

operator of molecule j, respectively, and �d j is a unit vector
describing the orientation of the molecule. We have here
neglected an extra term (proportional to A2 or μ̂2, depending
on the gauge) in the light-matter interaction which becomes
important only in the limit of ultrastrong coupling, i.e., when
coupling strengths become comparable to the bare transition
frequencies [38–41]. The dye molecules are represented as
few-level emitters with parameters chosen to reproduce the
macroscopic dielectric function. In particular, we treat the
molecules as four-level systems, with one ground and three
excited states,

Hmol, j =

⎛
⎜⎜⎝

0 0 0 0
0 ω1 − i γ1

2 0 0
0 0 ω2 − i γ2

2 0
0 0 0 ω3 − i γ3

2

⎞
⎟⎟⎠, (7)

μ̂ j =

⎛
⎜⎝

0 a1 a2 a3

a1 0 0 0
a2 0 0 0
a3 0 0 0

⎞
⎟⎠, (8)

where the parameters ωk , γk , and ak are taken from the fit
in Eq. (3). Note that we also neglect direct dipole-dipole
interactions between the molecules, as their (averaged) effect
is already included in the transition frequencies ωk extracted
from the dielectric function. We note for completeness that an
alternative (but much costlier) approach would be to extract
the molecular parameters from a fit to the bare-molecule
polarizability (obtained from the dielectric function using the
Clausius-Mossotti relation) and then explicitly include dipole-
dipole interactions between the molecules.

We treat the experimentally relevant limit that the host
material contains many randomly oriented organic dye
molecules, distributed evenly in the region around the
nanowire with number density ρmol = 1/Vmol, where Vmol

is the average volume occupied by each molecule. Consid-
ering the random distribution of the molecules along the
wire, translational symmetry is approximately conserved [19],
and consequently, superpositions of molecular states can be
formed with a well-defined wave vector kz. The Hamiltonian
thus becomes (approximately) diagonal as a function of the
parallel wave vector index n, significantly simplifying its
diagonalization.

In addition, for the case when more than a single guided
mode exists at a given kz (as is the case for D = 120 nm
and D = 130 nm), we can also approximate that since the
nanowire modes are orthogonal, they couple to independent
Dicke states (superpositions of molecular excitations). This
implies that the coupling between different wire modes and
molecular excitations is independent. The collective coupling
strength between the ith mode with parallel momentum kn and
the molecular Dicke state corresponding to the kth excitation
is then given by

g2
nmk =

∑
j

| �Enm(�r j ) · �d jak|2. (9)

Considering the cylindrical symmetry of the system and
that the molecules are randomly oriented and fill all of the
space outside the wire evenly, the coupling strength can be
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approximated by

g2
nmk ≈ 4πL

3

a2
k

Vmol

∫ ∞

R
r| �Enm(r)|2dr. (10)

Using Eqs. (4) and (5), the coupling strength can be written as

g2
nmk = 2h̄ωc,nm

3πεh

a2
k

Vmol

U el
ext,nm

Urad,nm
, (11)

where U el
ext is the part of the mode energy stored in the electric

field outside the wire,

U el
ext =

∫
r>R

εh| �E (�r)|2d�r. (12)

This can be expressed through Fext = U el
ext/Urad and the molec-

ular density ρmol as

gnmk = ak

√
2h̄ρmol

3πεh
ωc,nmFext,nm. (13)

It is interesting to note that the coupling strength does not
depend on whether the guided nanowire mode has a small
mode volume (strong localization of the field). The only infor-
mation about the wire mode entering the final expression is its
frequency and the fraction of the mode energy that is outside
the wire. Note that this assumes that space is completely
filled with molecules, so that a less confined mode effectively
interacts with more molecules to give the same (or even larger)
collective coupling as a confined mode. The localization of the
mode is compensated by the field strength, and in that sense,
well-confined (out-of-the-wire) modes are advantageous only
in terms of needing less space and not in terms of reaching
strong coupling.

We can now take the limit L → ∞, such that kz = 2πn/L
becomes a continuous variable, and proceed to construct
an effective 4 × 4 model Hamiltonian for each kz and each
nanowire mode independently:

Hi(kz ) =

⎛
⎜⎜⎝

ωc,m(kz ) gm1(kz ) gm2(kz ) gm3(kz )
gm1(kz ) ω1 − i γ1

2 0 0
gm2(kz ) 0 ω2 − i γ2

2 0
gm3(kz ) 0 0 ω3 − i γ3

2

⎞
⎟⎟⎠,

(14)

where m labels the nanowire mode and gmk (kz ) is given by
Eq. (13).

In Fig. 3, the dispersion relations calculated by the eigen-
values of Eq. (14) are shown (dashed colored curves) with
proper avoided crossings appearing near excitonic frequencies
manifesting the strong coupling, leading to polaritonic modes.
Out of resonance, as expected, the dispersion relations are
practically the same as those of the classical bare photonic
modes. It should be pointed out that the classical electromag-
netic calculations work at real energies ω but allow complex
momenta kz (describing propagation loss). On the other hand,
the quantum model works at real kz but allows complex ener-
gies (describing temporal loss). These two pictures represent
the same physics but are not completely equivalent. These dif-
ferences are the reason for the different behaviors close to the
regions of largest absorption where the classical modes bend
backwards (stationary electromagnetic field solutions), while
the quantum modes are actually split (time dynamic driving

process). We also note that the good agreement between
quantum and classical calculations in Fig. 3, without any fit
parameters, cannot be reproduced by the often-used strategy
of constructing an approximate model with kz-independent
couplings gmk (corresponding to approximating ωcFext as con-
stant).

Furthermore, we emphasize that the quantum model here
clearly shows that strong coupling is reached for these condi-
tions. The Rabi splitting �R is estimated from the splitting of
the eigenenergies of Eq. (14) at resonance. For example, the
cleanest system is given by the nanowire with diameter D =
90 nm, for which only the HE11 mode is guided. This system
supports strong coupling with significant Rabi splittings �R >

100 meV for both the first and second molecular excitations.
Moreover, nanowires with larger diameters support multiple
polaritons (also with significant Rabi splitting) at the same fre-
quency, which might be interesting for possible applications.

IV. ENERGY DISTRIBUTION: PHOTONIC AND
EXCITONIC MODES

An important characteristic of strong coupling is coherent
energy exchange between different physical systems, inducing
hybrid states that no longer can be seen or described as indi-
vidual systems. The distribution of the energy into photonic
and excitonic parts is important to characterize the new states.

From a classical perspective, the electromagnetic energy
for lossy media then can be calculated as a perturbation from
the lossless case. However, the strong dispersion and the high
losses of the permittivity invalidate the usual expressions for
the electromagnetic energy stored in the system. In addition,
there is no clear distinction between the energy stored in the
medium and that stored in the electromagnetic field. For this
purpose, we follow the approach taken by Loudon [42] for
the energy of a medium with a single resonant frequency and
its extension to multiple resonances [43,44], considering each
excitonic state as an independent resonance.

The energy of an absorbing dielectric medium described
by resonances is

W = Wo + Wf ,

Wo = 1

4

∫ ∞

R
rε0| �E (�r)|2dr

∑
n

2anω
(
ω2

n + ω2
)

(
ω2

n − ω2
)2 + ω2γ 2

n

,

Wf = 1

4

∫ ∞

0
r[ε0εr | �E (�r)|2 + μ0μr | �H (�r)|2]dr, (15)

where

εr =
{
εc, r < R,

εh, r > R,
μr =

{
μc, r < R,

μb, r > R.
(16)

The first term of Eq. (15), Wo, is the energy stored in the
excited oscillators (excitons), and it goes to zero out of
the resonances. The second term, Wf , is the energy carried
by the electromagnetic field.

Within the quantum model, the excitonic energy is cal-
culated as the (real part of the) expectation value of the
molecular exciton Hamiltonian Hmol in each state, relative to
the total energy of the eigenstate.
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FIG. 4. Fraction of the energy stored in the excitons calculated
by the classical (solid curve) and quantum approach (dashed curve)
for the HE11 mode at a nanowire diameter of D = 90 nm. The mate-
rial properties are the same as in Fig. 3. The resonant frequencies of
the excitons are marked by dotted vertical lines.

As we have previously seen that each nanowire mode is
independent from the point of view of the coupling with the
excitonic media, we now focus only on the case D = 90 nm
(results for other modes are analogous). The ratio between
the energy stored in the oscillators and the total energy of
the system, W = Wo + Wf , characterizes the nature of the
mode (photonic/excitonic). Figure 4 shows the percentage of
the energy stored in the excitons obtained by the classical
(solid curve) and quantum approaches (dashed curve) for
the HE11 mode at D = 90 nm. The agreement between both
approaches is extremely good at the frequencies where both
dispersion relations coincide (see Fig. 3). Far from resonance,
the energy stored in the oscillators goes to zero; thus, there is
no interaction with the excitons, and the mode is practically
photonic. In the spectral region of the resonance bands, the
fraction of the energy in the excitons increases, as the mode
becomes polaritonic. Close to resonance, as expected from
the differences in the dispersion relation, the approaches
differ: whereas the energy fraction within the classical model
yields smooth maximal values (below 100%) at the exci-
tonic frequencies (corresponding to the regions in which
the mode dispersion relation bends backwards in Fig. 3),
the quantum approach asymptotically tends to 1, namely, to
100% of energy stored as excitons (flat dispersion relation
in Fig. 3).

It is interesting to note that a high enough fraction of
excitonic energy is required for this system to be a suitable
platform for excitonic applications; however, at the same time,
it is desirable to minimize losses, which is achieved for high
photon components. A good compromise can be achieved at
intermediate-energy fractions below the onset of losses in the
dielectric function (hω ≈ 2.1 eV, at which Wo/W ≈ 0.3), as
we will show below.
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FIG. 5. Classical calculations of the propagation length Lp (in
logarithmic scale) as a function of frequency for the HE11 mode (D =
90 nm). Solid curve: the dielectric function is fitted to a Lorentzian
model (Fig. 2). Dashed curve: the experimental value of the dielectric
function is used.

V. HALF-LIFE, PROPAGATION LENGTH,
AND ENERGY VELOCITY

While, up to now, we have focused on the real part of
the quantities (wave vectors and/or energies), the losses of
the system are also a very important part necessary to obtain
a complete characterization. In particular, they determine
dynamic properties such as the mode propagation length
that are crucial for practical applications. Thus far, we have
studied the properties of the system using a Lorentzian fit
for the dielectric function, rather than the experimentally
measured one, since this allows more direct comparison with
a simple quantum model and gives almost identical results
for the dispersion relation and allows us to determine the
existence of strong coupling. However, the Lorentzian fit
severely overestimates losses away from the resonances, and
much more reliable results are obtained when using the actual
experimental values in order to calculate properties such as
the half-life τ and the propagation length Lp (linked through
the group velocity vg).

The propagation length Lp is the distance after which the
energy of the wave is reduced to 1/e of its initial value. For the
classical approach, the propagation length of a guided mode is
given by Lp = 1/2k′′

z , inversely proportional to the imaginary
part of the propagation constant, kz = k′

z + ik′′
z , that accounts

for the attenuation of the mode. In Fig. 5 the propagation
length of the HE11 mode for D = 90 nm (as in Fig. 4) is
plotted in logarithmic scale as a function of the frequency
using both the experimental value of the dielectric function
and the Lorentzian fit from Eq. (3) shown in Fig. 2.

At frequencies below first resonance, Lp using the ex-
perimental dielectric function gives values that are typically
one order of magnitude larger than with the Lorentzian fit
and gives propagation lengths that are one to two orders of
magnitude larger than the wavelength of the mode.

We also note that the difference between dielectric
functions is much smaller for the TE01 and TM01 modes at
very low frequencies (not shown here). This is due to the fact
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that, as the modes become leaky, the radiation processes begin
to dominate losses and the imaginary part of the permittivity
is no longer determinant. On the other hand, as expected, both
methods give similar results at frequencies close to resonance
(2.2–2.6 eV), where the Lorentzian fits accurately reproduce
the dielectric function. Finally, the Lorentzian fit leads to
higher (unphysical) values of Lp at high frequencies since
another resonance appears that was not included in the fit
therein.

For current and future applications that rely on exciton
transport [29–31,45], large propagation lengths are desired
while simultaneously keeping a considerable amount of
energy in the excitons (excited oscillators). To achieve better
coupling, the mode energy must be outside the wire, although
the localization of the energy in the excitonic medium would
imply higher losses. These two issues must be balanced in
order to optimize the propagation length. An important effect
to take into account here is that the propagation length is deter-
mined by the dielectric losses at the frequency of the polariton
mode. This implies that strong coupling can be used to push
the exciton peak away from the exciton losses through polari-
ton formation, allowing us to create states with high exciton
character that do not suffer from the large excitonic losses.
This is a particular strength of the semiconductor nanowire
systems studied here, where the bare photonic modes are
essentially lossless. For example, focusing on the HE11

mode and demanding that 30% of the energy be in the
excitons, the maximum propagation length is reached at
a diameter D = 70 nm, with Lp = 48 μm at hω = 2.02
eV (at the lower part of the first resonant frequency). The
propagation wavelength of the mode at that frequency is
367 nm, 130 times smaller than the propagation length. As
a general consideration, the propagation length is optimal
(related to the energy stored in the excitonic media) close to
frequencies at which losses start to substantially increase due
to inhomogeneous broadening.

The velocity at which energy is transported by a
propagating mode is normally given by the group velocity vg,
defined as

vg = dω

dk
. (17)

However, the velocity at which the energy is transported
must always be lower than the speed of light, which is not
fulfilled by this definition; for example, in the region where
the photonic bands bend backward, the group velocity goes to
infinity. Therefore, as for the energy, an alternative definition
is needed in lossy media. Following the works of Loudon and
Brillouin [42,46], we define the energy velocity ve as the ratio
between the flow of energy, given by the Poynting vector, and
the total energy stored in the system,

ve = Sz

W
=

∫ ∞
0 rSz(�r)dr

W
. (18)

For the bare photonic states calculated before (the lossless
case), the results given by Eqs. (16) and (17) are identical
(not shown here).

In Fig. 6 the energy velocity (divided by the speed of
light in the host medium ch) of the HE11 mode is shown
for D = 90 nm. In addition, the result for the bare system
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FIG. 6. Classical calculations of the energy velocity ve divided
by the speed of light in the host medium ch as a function of frequency
for the HE11 mode (D = 90 nm). Solid curve: dielectric function
fitted to a Lorentzian model; dashed curve: bare system (εb = 2.4).
The insets show the energy distribution at the first resonant frequency
hω = 2.23 eV for both cases.

is also included (dashed line). The energy velocity presents
dips at resonant frequencies. Strong coupling manifests as a
reduction in the energy velocity since the coherent exchange
of energy slows down the light flow. At resonant frequencies,
the electric permittivity of the excitonic media matches the
value of the background εh. Despite the nonzero imaginary
part, the field profiles for both cases (with and without reso-
nances) are very similar, and so are the value of the Poynting
vector and the energy inside the wire. However, the energy
outside the wire presents an additional contribution W o due to
the excitons (see insets in Fig. 6), slowing the propagation of
the energy down.

VI. CONCLUDING REMARKS

In conclusion, we have shown that strong coupling between
weakly guided modes of a semiconductor nanowire and a
surrounding excitonic medium can be achieved, exhibiting
Rabi splittings of more than �R > 100 meV for an organic
dye. The bare photonic modes are determined through a
rigorous classical analysis, namely, waveguide propagating
modes with an evanescent tail outside the nanowire. The
evanescent tail allows for strong coupling of the nanowire
modes with the excitons in external dye molecules. The
underlying physical mechanism is similar to surface plasmon
polaritons in metallic nanorods, but with the advantage of
much larger propagating lengths due to the nearly complete
absence of absorption inside the semiconductor nanowire.
A quantum model provides a straightforward analytical ex-
pression for the Rabi splitting and reveals that the relevant
quantity is not the field concentration but the fraction of the
field interacting with the emitters. The quantum model also
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reveals that coherent energy exchange plays an important role
in the coupled system: the dispersion relations reveal avoided
crossings with clear Rabi splittings, as expected from strong
coupling. We furthermore showed that the polariton modes
in these systems can achieve significant propagation lengths
up to two orders of magnitude larger than the bare mode
wavelengths while still maintaining a significant excitonic
character. This happens because strong coupling can shift
exciton modes to frequency regions where material losses are
much smaller than around the exciton resonances. Recalling
that lowest-order nanowire guided modes can be considered
nearly one-dimensional lossless propagating modes [24], we
thus anticipate that the proposed configuration might be a suit-
able candidate for enhanced exciton conductance [31], which

holds promise for applications related to exciton transport,
slow light, and conversion modes.
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