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Chapter 1

Introduction

Nature and nature’s laws lay hid in night;
God said “Let Newton be” and all was light.
Alexander Pope

It did not last: the devil, shouting “Ho,
Let Einstein be” restored the status quo.
John Collings Squire

The transport of particles and waves through a disordered medium is a long-
standing problem which comprises countless applications in (micro-)electronics,
optics and acoustics [1–5].

In a perfectly ordered medium, such as a semiconductor crystal without any de-
fects at zero temperature, transport would also proceed perfectly. For example, a
wire without disorder would show zero resistance. It is only the ubiquitous presence
of disorder, such as imperfections and impurities in the crystal, or crystal vibrations
(phonons), that leads to well known behavior such as Ohm’s law for macroscopic
wires. The presence of disorder thus governs the behavior of the transport coeffi-
cients of a material and leads to effects such as the metal-insulator transition, also
known as the Anderson transition [6].

Ohm’s law is valid for macroscopic conductors, where all relevant length scales
are large enough that quantum effects do not play a role. However, the rapid
advances in semiconductor manufacturing technology allow for ever smaller devices
to be constructed, such that the quantum nature of the electrons starts to play a
role [7–9]. The attention to disordered media has recently witnessed a revival due to
new experimental possibilities to study the ’mesoscopic’ regime where a classical-
to-quantum crossover of transport gives rise to a whole new class of interesting
phenomena, such as (weak) localization or universal conductance fluctuations. In
this mesoscopic regime, the systems are still large enough to be able to ignore the
atomic (microscopic) scale, but too small to be accurately represented in a classical
(macroscopic) description.
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In most investigations of transport through a disordered medium, the disorder
is assumed to be static and present in the bulk of the material through which
particles or waves are transported. This disorder can then be described by a disorder
potential that the particles (waves) are subject to. The strength and distribution
of this disorder potential determine, amongst other things, whether transport will
be ballistic, diffusive, or even absent by way of localization [1–5, 7, 8].

For the transport of charged particles through systems with bulk disorder, the
introduction of a magnetic field applied perpendicular to the disordered scattering
region leads to the emergence of new phenomena such as the quantum Hall effect [7,
8, 10] and the doubling of the localization length ξ [11].

Further advances in semiconductor manufacturing and the accompanying reduc-
tion of system sizes lead, however, to an increased surface-to-volume ratio in meso-
scopic devices, for which surface roughness can turn out to be the dominant source
of disorder scattering. The properties of transport are then determined by scatter-
ing at the rough boundaries of the wire, while there is almost no scattering in the
bulk, where transport can be assumed to be ballistic. While random matrix theory
(RMT) [11] is successful in describing bulk disordered systems, its application to
wires with surface disorder is not straightforward [12–17].

In this thesis, we study electronic transport through wires with surface disorder,
where we concentrate in particular on the case of wires with one-sided surface
disorder subject to a perpendicular magnetic field. This means that we restrict the
disorder to one of the boundaries, while assuming the other side completely smooth
and free of corrugation on an appropriate length scale. This special geometry
introduces a new aspect into the description: The phase space of the system, which
is chaotic in the case of bulk disorder, two-sided surface disorder (regardless of the
magnetic field), and one-sided surface disorder without a magnetic field, transforms
into a mixed phase space consisting of a regular island of “skipping” orbits and a
chaotic sea surrounding this island [18]. Similar systems have been treated in the
context of dynamical tunneling and quantum chaos [19–28].

Utilising the Modular Recursive Green’s Function Method [29,30], we are able to
numerically simulate wires of sufficient length to observe the asymptotic behavior of
transport, in particular localized behavior. In addition to the numerical simulation,
we derive an analytical expression for the localization length by performing wave
function matching without fit parameters that is found to agree with the observed
results very well.

This thesis is organised as follows. First, we describe mesoscopic systems in more
detail in chapter 2, including methods to calculate the conductance through such
systems by employing scattering theory. We then utilise these considerations for
the study of quantum wires, with the emphasis on the case of surface disorder, and
especially one-sided surface disorder with a magnetic field. We present the Modular
Recursive Green’s Function Method used to calculate the scattering matrix of our
systems in chapter 3. In chapter 4 we describe how we apply this method for
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constructing long quantum wires with surface disorder by using an “exponentiation”
algorithm.

We then present the numerical results of our calculations (chapter 5). We find
that wires with two-sided surface disorder behave as predicted by random matrix
theory (RMT). For wires with one-sided surface disorder (where RMT is not ap-
plicable) we show that we can perform a quantum-to-classical crossover that leads
to exponentially diverging localization lengths. The numerical result for the lo-
calization length ξ is found to agree very well with the result from an analytical
calculation utilising wave function matching. We then analyse the transmission
probabilities of the single modes and argue that their behavior can be explained by
tunneling between the regular island and the chaotic sea. In chapter 6, we show
the analytical calculation of the localization length ξ.



Chapter 2

Mesoscopic structures

Electron transport through the bulk of a semiconductor is usually studied by means
of the classical Boltzmann transport equation. This amounts to assuming that
the relevant length and time scales of potential changes are slow compared to the
electron wavelength and the temporal scale of the scattering process [7]. While these
used to be perfectly valid assumptions for semiconductors at room temperature (in
contrast to, e.g., superconductors, where quantum effects determine the transport
properties), the continuous improvement of semiconductor fabrication techniques in
the past decades requires an extension of this purely classical picture of transport.
It is now possible to fabricate devices where the mean free path of electrons is of
the order of 10µm, with an inelastic (phase-breaking) mean free path that is even
larger. At the same time it is easily possible to create structures with characteristic
dimensions that are much smaller than these mean free paths.

Such structures are usually called mesoscopic devices, indicating that they are
still large compared to the microscopic (atomic) scale, but small compared to the
macroscopic scale at which the Boltzmann transport equation is valid. To describe
transport on the mesoscopic scale therefore requires a theory that takes phase
coherence into account. The method we use to achieve this is quantum mechanical
scattering theory.

2.1 Scattering in mesoscopic structures

In correspondence to the common experimental situation of a two-dimensional elec-
tron gas at a heterojunction [7,8], we model the system as a two-dimensional cavity
to which two semi-infinite leads are attached, as shown in Fig. 2.1. Inside the cav-
ity, the potential V (r) can be arbitrary, while there are some constraints on the
potential inside the leads: First, we assume hard-wall boundary conditions, i.e. an
infinite potential outside the leads. Additionally, the potential is assumed to be
separable at large distances away from the scattering region, so that incoming and
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Figure 2.1: A quantum cavity

outgoing waves can be distinguished, turning this into a well defined scattering
problem.

From this assumption follows that the wave function φ of an electron in the
asymptotic regime is separable into a longitudinal and a transverse part, such that

φ±n (r) =
1√
θn

χ±n (y) exp(±ikx,nx). (2.1)

The mode index n runs from 1 to N , with N the number of open modes (also
called scattering channels) in the leads (we assume identical leads for simplicity).
We define open modes as those having a real wave number kx,n. These modes
can propagate inside the leads and carry an electrical current. For n > N , kx,n

contains an imaginary part. Such modes either decay exponentially away from
the scattering region or are forbidden by the boundary conditions, as they would
grow exponentially in the leads. These modes are thus negligible except near the
disordered region. The normalization factors θn are obtained from a normalization
condition that ensures that the open channels carry unit flux.

a+

−b
+b

−a

Figure 2.2: A quantum cavity. The right-moving (left-moving) states in the leads
are labelled by a+, b+ (a−, b−).
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Using these conventions, an incoming wave can be described in the basis of the
lead states by (cf. Fig. 2.2)

cin ≡ (a+
1 , a

+
2 , . . . , a

+
N , b

−
1 , b

−
2 , . . . , b

−
N). (2.2)

The N coefficients a+
n (b−n ) expand the incoming wave in the left (right) lead of

Fig. 2.1, such that the incoming wave is

Ψin(r) =


N∑

n=1

a+
nφ

+
n (r) for r in the left lead

N∑
n=1

b−nφ
−
n (r) for r in the right lead

(2.3)

with the φ±n as defined in Eq. (2.1).
Similarly, the outgoing (reflected and transmitted) wave is described by

cout ≡ (b+1 , b
+
2 , . . . , b

+
N , a

−
1 , a

−
2 , . . . , a

−
N). (2.4)

With these ingredients we can define the scattering matrix S as the 2N×2N matrix
that relates the two vectors cin and cout by

cout = Scin (2.5)

The scattering matrix has the block structure

S =

(
t r′

r t′

)
(2.6)

with the transmission matrix t (t′) for transport from left to right (right to left)
and the reflection matrix r (r′) for reflection in the left (right) lead. The N × N
elements tnm (rnm) of the transmission (reflection) matrix are called transmission
(reflection) amplitudes from incoming mode m to outgoing mode n. The transmis-
sion (reflection) probabilities are then given by

Tnm = |tnm|2 Rnm = |rnm|2 (2.7)

Tm =
N∑

n=1

|tnm|2 Rm =
N∑

n=1

|rnm|2 , (2.8)

where Tm (Rm) is the total transmission (reflection) probability of mode m.
Using the transmission amplitudes as defined above, we can write the scattering

wave function in the two leads as

Ψ(r) =


φL+

1 (x, y) +
NL∑

m=1

rm1φ
L−
m (x, y) for r in the left lead,

NR∑
m=1

tm1φ
R+
m (x, y) for r in the right lead,

(2.9)
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where we have assumed for notational simplicity that the incoming wave is coming
from the left lead in the first mode, i.e. cin = (1, 0, . . . , 0). The generalization to
arbitrary cin is straightforward.

Since we normalized our wavefunctions to unit flux, current conservation implies
that the scattering matrix is unitary, i.e. S†S = 12N , where 12N is the identity
matrix of dimension 2N × 2N . From the unitarity of the scattering matrix follows,
amongst other things,

Tm +Rm = 1, (2.10)

i.e., the transmission and reflection probabilities of each mode have to add up to
one, or simply put, the electron can not disappear.

2.1.1 Onsager-Casimir symmetry relations

In addition to unitarity, the scattering matrix has to fulfill the Onsager-Casimir
symmetry relations [31–33], which follow from time-reversal symmetry. For non-
vanishing magnetic field, this also demands reversal of the magnetic field. In our
simple case of a structure with two leads, they are given by

tmn(B) = t′nm(−B) (2.11a)

rmn(B) = rnm(−B) (2.11b)

r′mn(B) = r′nm(−B) (2.11c)

Figure 2.3: A quantum cavity with classical trajectories to illustrate the Onsager-
Casimir symmetry relations.

These symmetry relations can be most easily understood by looking at classical
trajectories. The green path sketched in Fig. 2.3 is one possible trajectory of an
electron injected into the left lead if there is a magnetic field into the page. If the
magnetic field switches sign (i.e. B → −B) and we inject the electron from the
right along the same path, it will retrace its trajectory exactly, but in the opposite
direction. As the mode number m corresponds to the angle with which the electron
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is injected, it is thus easy to conclude that the transmission from mode n in the
left lead to mode m in the right lead with magnetic field B will be the same as the
transmission from mode m in the right lead to mode n in the left lead with the
opposite magnetic field −B. This explains Eq. (2.11a). The same argument holds
true for the reflection, the only difference is that the electron enters the cavity from
the same side as it leaves it. This explains Eq. (2.11b) for injection from the left
and Eq. (2.11c) for injection from the right. The red path in Fig. 2.3 shows one
possible trajectory for injection from the left and subsequent reflection. Reversal
of the magnetic field again makes it possible to follow the exact same path in the
opposite direction.

2.2 Conductance

Once we know the scattering matrix of our structure, we can calculate the conduc-
tance g in our 2-dimensional system, which is defined as the ratio of the current
I and the voltage difference V across the system in the limit of vanishing voltage,
g = limV→0 I/V . This limit ensures that we are in the regime of linear response.

The Landauer formula states that at zero temperature this limit results in the
following relation for the conductance:

g =
2e2

h
Tr(t†t) =

2e2

h

N∑
m=1

Tm =
2e2

h

(
N −

N∑
m=1

Rm

)
, (2.12)

where t is the transmission matrix from the left lead to the right lead, as defined in
Eq. (2.6). The prefactor 2e2/h is the fundamental unit of conductance or conduc-
tance quantum, which includes a factor of 2 owing to the twofold spin degeneracy
that arises because we neglect all spin interactions. We will always give the conduc-
tance in units of this fundamental conductance, such that g = Tr(t†t). Eq. (2.12)
was first found in slightly different form by Landauer [34] for the case of a sin-
gle open channel in the leads, and first written down in this form (generalized to
the multi-channel case) by Fisher and Lee [35]. Its validity at arbitrary magnetic
fields was shown by Baranger and Stone [36], where a generalization to non-zero
temperatures was also introduced. As an aside, we note that the generalization of
the Landauer formula to a system with an arbitrary number of leads is trivial, the
reduction to the case of two leads was done here merely for notational simplicity.

The appeal of the Landauer formula (2.12) is that it directly connects the conduc-
tance, a measurable quantity, with the simple theoretical concept of the scattering
matrix. At first sight, it might seem surprising that for a system without scat-
tering (i.e. S = 1) the conductance is finite (g = N) – a fact that led to some
controversy surrounding the Landauer formula. On closer inspection, it is found
that this property follows from the assumptions made in deriving the formula. A
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complete description can be found in chapter two of reference [8]. In short, the
finite conductance for a “perfect” conductor stems from the fact that the leads are
assumed to be connected to macroscopic contacts or electron reservoirs. Conse-
quently, the minimum resistance g−1

C = 1/N of a conductor with N modes is called
the “contact” resistance.

By combining the Onsager-Casimir relations (2.11) with the unitarity condition
(2.10), we can derive an additional property for the conductance

N −
∑
m,n

|rmn(B)|2 = N −
∑
m,n

|rnm(−B)|2 (2.13)

from which follows that

g(B) = g(−B). (2.14)

We thus find that the conductance does not change if we reverse the magnetic
field. Note that this only applies to the total conductance, not the transmission
probabilities of the single modes.

It should be noted that the Landauer formula does not necessarily demand phase
coherence throughout the sample, although we should use the formulation in terms
of the transmission probabilities instead of the transmission amplitudes in such a
case. In this thesis, transport is always assumed to be fully phase coherent, with
all inelastic processes (necessary to achieve thermal equilibrium) taking place in
the reservoirs (at chemical potential or Fermi energy EF ) to which the leads are
connected.

The potential V (r) inside the cavity leads to elastic scattering and thus deter-
mines the elastic mean free path le of the electron, where the mean free path is
defined as the average distance an electron can travel without undergoing elastic
scattering. Depending on the magnitude of le compared to some characteristic di-
mension L of the sample, we can distinguish between different transport regimes:
As long as L� le, the electron is scattered (phase coherently!) many times inside
the cavity, and thus transport can be thought of as a slow diffusion process. Con-
trary to this diffusive regime of transport, we enter the quasi-ballistic regime when
the sample is much smaller than the mean free path of the electron, i.e. L� le. In
that case, the electron propagates almost freely inside the cavity and the transport
properties are determined by scattering at the boundaries of the cavity. Such a sys-
tem is often called a quantum dot [37]. Note that the essential difference between
the quasi-ballistic and the diffusive regime is the amount of scattering that the
electron undergoes in the bulk of the cavity. If the disorder is strong enough and
the system is sufficiently large (L � ξ), the conductance will decay exponentially
with system size. This effect is called Anderson localization [6], and consequently,
the system is then said to be in the localized regime, with localization length ξ.
Depending on the dimensionality of the system, localization occurs only for large
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enough disorder (three dimensions) or for any disorder strength (one dimension).
For two dimensions, the conductance will always go to zero for large L, but not
necessarily with an exponential decay [2, 11].

2.3 Quantum wires

We now apply the general considerations on transport through a phase coherent
quantum system to the case of a wire. In particular, we will use the term quantum
wire for a quantum dot where the aspect ratio of length L to width W is much
greater than one (L/W � 1).

For the case of a one-dimensional chain with disorder (which corresponds to a
wire with only one open mode), Anderson et al. [38,39] found that the transmission
decays exponentially as a function of the wire length (i.e. g ∝ exp(−L/ξ)) even for
arbitrarily weak disorder. Quantum wires with disorder will therefore always enter
the localized regime, with localization length ξ. For a 1D system, ξ is about the
same as the mean free path le. The generalization of the theory of localization to
the multi-mode case (i.e., a wire with bulk disorder and N open modes, sometimes
called a quasi-1D system) shows that there is still localization, but the localization
length increases by a factor of about N , i.e. ξ ∼ Nle ([11] and references therein).
Since in the limit of large L essentially no transport takes place, the localized regime
is often also referred to as the insulating regime.

The prediction that every wire shows localization once L ∼ Nle seems surprising
at first. Does it mean that copper wires become insulators if they are made long
enough? This obviously does not happen. The prediction is only valid if the system
is phase coherent over scales as large as the localization length. For normal metal
wires, Nle will be much larger than the phase coherence length (or inelastic mean
free path), as N is very large. As soon as phase coherence is destroyed, there is no
localization and the wire follows Ohm’s law [8].

To extract the localization length from the numerical data for the phase-coherent
systems studied in this thesis we employ the following relation [11, 38, 39],

〈ln g〉 ∝ −L
ξ

L� ξ. (2.15)

The localization length ξ enters as a fit parameter and the brackets 〈. . . 〉 indicate
that we average over different realizations of the disorder and/or a small range of
energies (the two types of averaging are equal under the assumption of ergodicity).
It is important to take the average of the logarithm of the conductance and not
the logarithm of the average conductance here. The reason for this is that in the
localized regime, the distribution of g is not self-averaging (which it is for shorter
wire lengths) so that ∆g/〈g〉 actually diverges with increasing wire length. This
makes 〈g〉 unusable for characterizing the system. As g is log-normally distributed,
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the logarithm ln g of the conductance follows a Gaussian distribution in this regime
(when g � 1), and its average is thus a valid quantity [38, 39].

For wires shorter than the localization length, but still longer than the elastic
mean free path, the resistance increases linearly with the wire length, such that
g is well described by Ohm’s Law (g ∝ W/L). In this diffusive regime, the wire
behaves like a normal metal wire without phase coherence. More exactly, the
following behavior is predicted [38–40]:

〈
1

g

〉
=

1

N
+

L

Nle
le � L� ξ (2.16)

where the first term is the “contact” resistance g−1
C = 1/N mentioned above, while

the second term is sometimes called the “actual” resistance g−1
A , since it is the

system-specific part of the resistance. For details we refer to chapter 2 of Ref. [8].
Note that the configuration average is taken over the inverse conductance, i.e. the
resistance of the wire. Below, we will use the above relation to extract the elastic
mean free path le from the data.

Historically, the research on electron transport through disordered wires was
largely focused on wires with bulk disorder. The predictions stated above are well
understood and follow from random matrix theory (RMT) [11, 41, 42]. This theory
was originally developed by Wigner for the study of the statistics of energy levels in
heavy nuclei in the 1950’s (for a review see [43]). It was later discovered that it can
be applied generally to systems that are classically chaotic and specifically to wires
with bulk disorder. For example, Ericson fluctuations in nuclear cross-sections [44]
correspond to universal conductance fluctuations in mesoscopic systems [11].

In the case of scattering problems, the scattering matrix is assumed to be ran-
domly distributed, where the exact distribution depends on the symmetries of the
problem. Starting with this approach, it is possible to derive the Dorokhov-Mello-
Pereyra-Kumar equation ([11] and references therein), which describes the evolution
of the distribution of transmission eigenvalues of a bulk disordered wire. The only
system-specific information that enters into this equation is the symmetry class of
the system. If there is no magnetic field, the motion of the electrons will obey
time-reversal symmetry. On the other hand, inclusion of a magnetic field breaks
this symmetry since the Lorentz force depends on the velocity and thus changes
sign under time-reversal.

In the case of broken time reversal symmetry, the Dorokhov-Mello-Pereyra-
Kumar equation can be solved analytically, so that the full distribution function of
the eigenvalues of a bulk disordered wire in a magnetic field is known within the
framework of random matrix theory.
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2.4 Wires with surface disorder

The improvements in fabrication techniques of semiconductors in the last decades
have led to structures with ever less defects. The less defects there are, the longer
the mean free path in the semiconductor. If the mean free path is larger than
any dimension of the system, the electrons are only scattered at the boundaries
of the scattering region and the quasi-ballistic regime is entered. Evidently, if the
surface of the wire was completely smooth, we would have the case of an ideal
lead as described above and there would be no scattering at all. This has even
been realized experimentally [45]. For wire walls which are not perfectly smooth,
though, we have an entirely new class of systems, the wires with surface disorder.
Such quantum wires have only recently been studied.

For a wire with surface disorder, we can not expect the predictions for bulk dis-
order to hold since the isotropy assumption made in deriving these predictions is
violated. This assumption states that the transmission probability is, on average,
independent of the incoming or outgoing mode, such that the magnitude of all ele-
ments of the transmission matrix is the same. The isotropy assumption works very
well when the main sources of scattering are bulk defects, but breaks down in the
case of surface disorder. This can be understood by considering the correspondence
of quantum modes in the wire to classical trajectories, as shown in Fig. 2.4.

Figure 2.4: Quantum modes and corresponding classical trajectories. The first mode
(green) corresponds to injection at a low angle, while a higher mode (red) corre-
sponds to injection at a higher angle.

The higher modes have high transverse momentum and thus correspond to elec-
trons entering the wires at steep angles, while the low modes correspond to trajec-
tories with shallow angles. Higher modes visit the disordered surface region more
often and are thus more strongly affected by the disorder, introducing a mode de-
pendence for the disorder. This mode dependence of scattering at the surfaces
necessitates that all the predictions previously given have to be reexamined to see
whether they can be applied for wires with surface disorder.

There are a number of numerical studies of transport through wires with surface
disorder. It should be noted that waveguides for optical waves, acoustic waves,
and microwaves behave similarly to electronic (quantum mechanical) wires with re-
spect to their transport properties. For example, in two dimensions, the Helmholtz
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equation for the electric field component of transverse magnetic modes in a mi-
crowave cavity is equivalent to the Schrödinger equation with hard wall bound-
ary conditions. Consequently, some of the literature discusses optical waveguides
(e.g. [12, 14, 17, 46, 47]) and some electronic structures (e.q. [15, 16, 48]). Although
there is sizable number of papers studying wires with surface disorder, no complete
theoretical model to describe and predict their behavior seems to exist. Conse-
quently, the existing (numerical and experimental) results are mostly compared to
the predictions for bulk disorder. The resulting discrepancies are typically explained
by the mode-dependent behavior of surface scattering.

One of the main results of these studies is that generally no well-defined diffu-
sive regime exists for wires with surface disorder, while a quasi-ballistic (localized)
regime can still be identified for very short (long) wire lengths. Between these
two extremes, there is an intermediate regime where the Tnm all behave differently,
preventing a classification in terms of a global parameter regime. Still, for each
incoming mode one can specify whether it is in the ballistic, diffusive, or localized
regime [12, 14].

When the various parameters of the system are chosen in such a way that in-
termode mixing is strong, the behavior of the system is again independent of the
incoming mode. In that case, a global diffusive regime can still emerge.

2.4.1 One-sided surface disorder with magnetic field

B

Figure 2.5: A wire with one-sided surface disorder in a magnetic field and a “skip-
ping” trajectory (green).

If surface disorder is only present on one side of the wire, the other being perfectly
flat, and we add a magnetic field, as in Fig. 2.5, we have the special case of the
wire with one-sided surface disorder in a magnetic field. In the classical description
of such a wire, there are regular “skipping” orbits that never reach the disorder
(shown in red in Fig. 2.5). Because of these regular trajectories, the system is not
completely chaotic, but possesses a mixed phase space [18].

The phase space consists of a regular island, inhabited by the skipping orbits,
and a chaotic sea, inhabited by the trajectories that are scattered by the disorder.
Note that this depends crucially on both the restriction of the disorder to one side
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and the magnetic field. If we add disorder on both sides or turn off the magnetic
field, no skipping orbits can exist and the system is completely chaotic (under the
condition that it is long enough that there are almost no direct paths).

It is only the wire with one-sided surface disorder in a magnetic field that has a
large regular island. This fundamental difference to the quantum wire with bulk
disorder or two-sided surface disorder suggests that random matrix theory should
not be applicable to a wire with one-sided surface disorder in a magnetic field.
Nevertheless, Garćıa-Mart́ın et al. [49] found that for low energies and magnetic
fields some predictions from RMT still hold.

Even though there are classical states that do not suffer scattering at the rough
surface, we are not in the regime of the quantum Hall effect [7,8,10]. In the quantum
Hall regime the magnetic field is strong enough that the propagating states on the
two sides of the lead decouple completely. This happens when the cyclotron radius
is significantly smaller than the width of the wire. There are then two possible types
of trajectory: Edge states at the boundaries of the lead that propagate in opposite
directions for the two sides of the lead and states in the middle of the lead that
never touch any boundary, but instead perform circular orbits in the absence of a
random potential in the interior. These states do not carry any flux. In this regime
of very strong magnetic field (small cyclotron radius), there is almost no scattering
from the flux-carrying modes on one side of the lead to the modes carrying flux in
the other direction on the other side. This even applies if there is bulk disorder.

In contrast, the absence of scattering in a wire with one-sided surface disorder for
the skipping modes depends crucially on the specific geometry. As soon as disorder
is introduced on both sides of the wire, the skipping orbits are scattered and the
regular island disappears.



Chapter 3

Method

We simulate transport through a ballistic cavity with surface disorder as described
above (section 2.1). Our system is characterized by hard-wall boundary conditions
and an electrostatic potential which we set to zero in the whole system (lead-cavity-
lead). We include a constant magnetic field, oriented perpendicular to the scattering
plane. In the two semi-infinite leads of width W , we impose scattering boundary
conditions at asymptotic distances, i.e. far away from the disordered region. The
transverse part χ±n (y) of the wave function

φ±n (r) =
1√
θn

χ±n (y) exp(±ikx,nx) (3.1)

is sinusoidal in the field-free case, and a combination of Kummer functions in the
presence of the magnetic field [50, 51]. Atomic units (~ = |e| = meff = 1) will
be used from now on, unless explicitly stated otherwise. We construct our system
by decomposing it into modules and employing the Modular Recursive Green’s
Function Method (MRGM) developed by S. Rotter [29, 30]. This method is used to
calculate the Green’s function of the system on a discretized grid. The scattering
matrix S can then be extracted by projecting the modes in the leads onto the
Green’s function. We do not include any phase-breaking mechanism in our method,
i.e. we assume phase coherence throughout the sample.

3.1 Brief review of the MRGM1

We start by briefly reviewing the MRGM for the case of no magnetic field. Starting
point is the observation that a large class of geometries with non-separable bound-
aries can be decomposed into separable two-dimensional substructures, referred to
in the following as modules. For each of these modules the discretization of the

1Parts of this section go back to [30]
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corresponding tight-binding (tb) Hamiltonian can be performed on a symmetry-
adapted grid. The grid for each module is chosen such that the eigenfunctions of
the tb Hamiltonian

Ĥtb =
∑

i

εi | i 〉〈 i |+
∑
i,j

Vi,j | i 〉〈 j | (3.2)

separate into two generalized coordinates. In the wires studied in this thesis, we
only use rectangular modules, for which the two coordinates are just the Cartesian
x and y. Ĥtb contains hopping potentials Vi,j for nearest-neighbor coupling and
site energies εi. Both quantities are chosen such that the Schrödinger equation,
Ĥtb|φm〉 = Em|φm〉, converges towards the continuum Schrödinger equation in the
limit of high grid point density. For the Cartesian coordinate system we have at
B = 0 [29]

V x
i,i±1 =

−1

2∆x2
, V y

j,j±1 =
−1

2∆y2
, εi =

1

∆x2
+

1

∆y2
. (3.3)

For separable energy eigenfunctions of the general form |Em〉 = |Ek〉 ⊗ |Ek,n〉
the spectral representation of the retarded (+) and advanced (−) Green’s function
G±(r, r′, B,EF ) of the module is simply given by

G±(r, r′, B,EF ) =
∑

k

〈x|Ek〉〈Ek|x′〉
∑

n

〈y|Ekn〉〈Ekn|y′〉
EF ± iε− Ekn

. (3.4)

The indices (k, n) represent the quantum numbers of the separable eigenfunctions
|Ek〉, |Ek,m〉 associated with the degrees of freedom x and y respectively.

The Green’s functions of the separate modules are joined by solving a matrix
Dyson equation,

G = G0 +G0V̄ G, (3.5)

where G0 and G denote Green’s functions of the disconnected and the connected
modules, respectively. The matrix V̄ denotes the hopping potential V multiplied by
the size of the unit cell V̄ = V∆R, which in a Cartesian grid is ∆R = ∆x∆y. The
complete scattering structure can thus be assembled from the individual modules
(much like a jigsaw puzzle). The number of necessary recursions [i.e. solutions of
(3.5)] is (approximately) equal to the number of modules.

Once the Green’s function G+ for the combination of all modules is assembled,
the transmission amplitudes tnm from entrance lead mode m into exit lead mode n
can be calculated by projecting G+ onto the transverse wavefunctions in the leads
χn(yi),

tnm(EF ) = −i
√
kx2,nkx1,m

∫ W/2

−W/2

dy2

∫ W/2

−W/2

dy1 χ
∗
n(y2)G

+(y2, y1, EF )χm(y1) .

(3.6)
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where kxi,n denotes the corresponding longitudinal wave numbers, which are given
by

kxi,n =

√
k2

F −
(nπ
W

)2

(3.7)

Note that (3.6) and (3.7) are only valid for B = 0. The number of open modes
can be easily calculated from Eq. (3.7). With the following expression

kF = η
π

W
, (3.8)

the number of open modes N in the leads is simply given by [η] ([. . .] denoting the
integer part) provided that no magnetic field is present.

3.2 Inclusion of the magnetic field

Incorporation of the magnetic field into the MRGM poses a number of complica-
tions. The solutions of these difficulties will be presented in this section. At the core
of the problem is the preservation of separability of the Schrödinger equation. The
usage of gauge transformations as well as of Dyson equations for decomposing non-
separable structures into separable substructures plays a key role in accomplishing
this goal. We use a magnetic field in the negative z-direction, B = (0, 0,−B),
which enters the tb Hamiltonian (3.2) by means of a Peierls phase factor [7, 52],

Vr,r′ −→ Vr,r′ · exp

[
(i/c)

∫ r′

r

A(r)dr

]
, (3.9)

with which the field-free hopping potential Vr,r′ is multiplied. The vector poten-
tial A(r) satisfies ∇×A(r) = B. The Peierls phase will, of course, in most cases
destroy the separability of the eigenfunctions of Ĥtb. The difficulties can be, in
part, circumvented by exploiting the gauge freedom of the vector potential, i.e.,

A → A′ = A +∇λ , (3.10)

where λ(r) is a scalar function. By an appropriate choice of λ the wavefunction
remains separable on a given symmetry adapted grid. Specifically, to preserve
separability we employ the Landau gauge for a Cartesian grid

A = By x̂, (3.11)

A major complication results from the fact that, in the presence of the magnetic
field, the separability on an unrestricted grid of a given symmetry does not imply
the separability in the presence of boundary conditions of the same symmetry. We
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P Q P Q

Figure 3.1: Joining and disconnecting of modules by application of a Dyson equa-
tion: two semi-infinite leads. The hard wall boundary conditions at the sites on
the border of the modules are represented by empty circles (accessible space by full
circles). The gray shaded areas P and Q are those grid slices at which the Green’s
functions are evaluated (see text).

illustrate this problem with the help of one typical example, the semi-infinite quan-
tum wire with lead width W (Fig. 3.1). We impose hard-wall boundary conditions
φ(x, y = ±W/2) = 0 and consider first the infinite quantum wire along the x direc-
tion. Because of the Cartesian boundary conditions, the symmetry adapted gauge
is the Landau gauge A = By x̂. Consider, for notational simplicity, the Schrödinger
equation in the continuum limit,

Hφ(y, x) =
1

2

(
p +

1

c
A

)2

φ(x, y)

=
1

2

(
− ∂2

∂x2
− ∂2

∂y2
− i2B

c
y
∂

∂x
+
B2y2

c2

)
φ(x, y) = EFφ(x, y).

(3.12)

Since the longitudinal momentum px = −i∂/∂x commutes with H, the separa-
bility of the wavefunction persists in the presence of the magnetic field: φ(x, y) =
fk(x)χ(y) with fk(x) = eikx. If, however, one introduces an additional Cartesian
boundary condition along the y-axis [i.e. φ(x = 0, y) = 0 for a semi-infinite lead] the
situation changes. In the absence of the magnetic field, B = 0, the linear term in
px vanishes and thus the choice f(x) = sin(kx) [i.e. a linear combination of f±k(x)]
satisfies the boundary condition and preserves the separability, even though px is
no longer conserved in the semi-infinite lead. However, for B 6= 0 and the same
boundary condition φ(x = 0, y) = 0, the term linear in B and px destroys the
separability. The wavefunction takes now the general form

φ(x, y) =
∑
m

eikmx
∑

n

cmnχmn(y). (3.13)

The breakdown of separability by the introduction of an additional boundary
condition indicates that the Green’s function of confined modules will be more
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complex than for extended systems for the same symmetry adapted grid and the
same gauge. Therefore, the program of the modular method of building up extended
complex structures by “welding together” smaller modules of higher symmetry
will be executed in reverse: non-separable confined modules will be generated by
“cutting in pieces” larger separable modules. Confining boundary conditions will
be introduced rather than removed by the matrix Dyson equation. In the example
above, the semi-infinite quantum wire is generated by cutting the infinite wire
at the line x = 0, thereby imposing the additional boundary condition. Just as
connecting modules, so is disconnecting a given module equivalent to the solution
of a matrix Dyson equation,

GE = GC +GC V̄ GE. (3.14)

In this contextGE (GC) is the Green’s function of the extended (confined) module
and V̄ is the hopping potential that connects the modules. Solving (3.14) in reversed
mode (i.e. for GC rather than for GE) amounts to dissecting the larger module.

Provided that the Green’s functions of all the necessary modules are available,
we have to link them with each other to assemble the entire scattering geometry.
However, in the presence of a magnetic field we have to take into account that the
different modules will be calculated in different gauges. Joining different modules
requires, therefore, in general a gauge transformation. For the Green’s function on
the grid G(ri, r

′
j) this transformation is simplified by the fact that the matrix of

gauge transformations

[Λ(rj)]jk = exp [−iλ(rj)/c] δjk (3.15)

is diagonal in the grid representation. Correspondingly, the transformation of
both the hopping potential V̄ and the Green’s function is local, i.e.

V̄ (ri, r
′
j) → V̄ ′(ri, r

′
j) = Λ(ri) V̄ (ri, r

′
j)Λ

∗(r′j) (3.16a)

G(ri, r
′
j) → G′(ri, r

′
j) = Λ(ri)G(ri, r

′
j)Λ

∗(r′j) . (3.16b)

It is thus not necessary to transform gauges of different modules to one global gauge.
Instead, it is sufficient to perform a local gauge transformation at the points of the
junctions {ri}, such that the gauges of the two modules to be joined agree at these
points.

Finally, in order to extract the S-matrix, i.e. the amplitudes tnm and rnm, matrix
elements of the current operator must be of gauge-invariant form. This requirement
can be fulfilled by employing a double-sided gradient operator which is defined
as [36]

f
↔
Dg = f(x)Dg(x)− g(x)D∗f(x) = −g

↔
Df with D = ∇− i

c
A(x) . (3.17)
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With its help the transmission amplitudes can be evaluated as [36, 53–56]

tnm(EF , B) =− i

4
√
θnθm

∫ W/2

−W/2

dy2

∫ W/2

−W/2

dy′1 χ
∗
n(y2)e

−iknx2 (
↔
D · x̂2)

∗

G+(x2,x
′
1, EF , B) (

↔
D ′ · x̂′1)χm(y′1)e

ikmx′1 . (3.18)

The unit vectors x̂n are assumed to be pointing in outward direction of the n-th
lead and θm denotes the outgoing particle flux carried by χn(y′1)e

iknx′1 through the
lead cross section.

Determination of transverse states χm(yi) and of the corresponding longitudinal
momentum km as well as the normalization factors θm will be discussed below.
For the reflection amplitudes rnm, a relation similar to (3.18) holds [36]. From
tnm and rnm the conductance can be calculated by means of the Landauer formula
[Eq. (2.12)].

3.3 Calculation of modules

This section is dedicated to the evaluation of the Green’s functions for those mod-
ules which we need to assemble a wire with surface disorder: the semi-infinite leads
and the rectangle. For these modules Eq. (3.4) is not applicable. This is due to
the non-separability for confined geometries as discussed above. Moreover the spec-
trum in open structures like the semi-infinite lead is continuous rather than discrete.
Unlike in the field-free case [57], the resulting integrals cannot be calculated ana-
lytically. However, both problems can be overcome by applying the matrix Dyson
equation in a non-standard way.

3.3.1 Rectangular module

As illustrated above for the semi-infinite wave guide, the Dirichlet boundary con-
dition for the confined structure of a rectangle with magnetic field is not separable,
no matter which gauge is chosen. The separability can however be restored by
imposing periodic boundary conditions on two opposing sides of the rectangle.
Topologically, this corresponds to folding the rectangle to the surface of a cylinder
(Fig. 3.2). In this case we connect the first (P ) and the last (Q) transverse grid slice
of a rectangular grid by a hopping potential |V x

PQ| = |V x
QP | = −1

2∆x2 . The Green’s
function of this “cylinder surface” (cs) will be denoted by Gcs in the following.
The calculation of the rectangle Green’s function Gr will be obtained out of Gcs

by a Dyson equation used here in “reversed” mode, i.e. for disconnecting tb grids.
This method for calculating the rectangular module may seem like a detour, but it
is numerically more efficient than a strip-by-strip recursion. For completeness we
mention that an alternative way to calculate Gr was proposed in Ref. [58].
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XP P QQ X

Figure 3.2: Applying a Dyson equation in “reversed mode” to construct Green’s
functions for a rectangle out of a cylinder surface. The periodic boundary conditions
are transformed into hard wall boundary conditions. The gray shaded areas P , Q
and X are those grid slices at which the Green’s functions are evaluated (see text).

The Green’s function for the cylinder surface Gcs can be constructed from sepa-
rable eigenfunctions, |Em〉 = |Ex

k 〉⊗|E
y
kn〉, according to Eq. (3.4). Solving the tight-

binding Schrödinger equation for the cylinder surface, we obtain for the longitudinal
eigenstates 〈xj|Ex

k 〉 = (Nx∆x)
−1/2 exp(i2πkj/Nx), which results in a tridiagonal,

symmetric matrix-eigenproblem of size Ny ×Ny for the transverse modes [59],

Ekn〈yl|Ey
kn〉 =

−1

∆x2

[
cos

(
2πk

Nx

+
B

c
yl∆x

)
− 1

]
× 〈yl|Ey

kn〉

− 1

2∆y2

(
〈yl−1|Ey

kn〉 − 2〈yl|Ey
kn〉+ 〈yl+1|Ey

kn〉
)

(3.19)

By “cutting the cylinder surface open” along a line of constant x, we obtain from
Gcs the desired Green’s function Gr for the rectangle (Fig. 3.2). We demonstrate
this for the rectangle Green’s function Gr

PX from the first transverse slice P to any
other slice X. To determine Gr

PX we solve the following system of Dyson equations,

Gr
PX = Gcs

PX −Gr
PQV̄QPG

cs
PX −Gr

PP V̄PQG
cs
QX (3.20)

Gcs
PQ = Gr

PQ +Gr
PQV̄QPG

cs
PQ +Gr

PP V̄PQG
cs
QQ (3.21)

Gcs
PP = Gr

PP +Gr
PQV̄QPG

cs
PP +Gr

PP V̄PQG
cs
QP , (3.22)

where the first line is the “reversed” Dyson equation. The three unknowns in
the above equations are the Green’s functions connecting the slices (P,X), (P,Q)
and (P, P ), Gr

PX , G
r
PQ, G

r
PP . By solving these three equations, the unknowns can

be uniquely determined.
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3.3.2 Semi-infinite lead

QP QP

Figure 3.3: Applying a Dyson equation to construct Green’s functions for a semi-
infinite lead out of “modules”. Joining a transverse slice with a semi-infinite
lead schematically leaves the Green’s function of the lead invariant [for details see
Ref. [29]]. Notation as in Figs. 3.1 and 3.2.

Because of its continuous spectrum, the Green’s function for the semi-infinite lead
poses an additional challenge beyond that of the non-separability of the wavefunc-
tion discussed above. We therefore apply one further “trick” to bypass this prob-
lem. Our approach is based on the observation that adding a slice to a semi-infinite
quantum wire leaves this wire (up to irrelevant phases) invariant (see Fig. 3.3). We
assume a semi-infinite lead with x ∈ [∆x,∞) and hard-wall boundary conditions
at x = ∆x and y = ±W/2. To this object we add a slice consisting of just one
transverse chain of tb grid points which we place at x = 0. The system of Green’s
functions for the propagation from the transverse chain at x = 0 (P ) back to itself
(P ) or to the first transverse slice of the semi-infinite lead (Q) at ∆x reads

GPP = G0
PP +G0

PP V̄PQGQP , (3.23a)

GQP = G0
QQV̄QPGPP . (3.23b)

Each multiplication involves a matrix product with a dimension equal to the num-
ber of transverse grid points. The key point is now that the system of Eqs. (3.23)
can be closed through the invariance condition (cf. Fig. 3.3) for the semi-infinite
lead, i.e. GPP = G0

QQ. In Landau gauge A = (−By, 0, 0) the latter relation does
not involve additional gauge phases since these are already contained in the hop-
ping matrix element. We additionally note that an equivalent point of departure
for the derivation of GPP is the Bloch condition for states in the lead [53–56].

Setting Z = GPP V̄QP and using the hermiticity condition V̄QP = V̄ ∗
PQ ≡ V̄ ∗,

Eqs. (3.23a,3.23b) can be converted to a quadratic matrix equation

ZZ − V̄ −1(G0
PP )−1Z + V̄ −1V̄ ∗ = 0 . (3.24)
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Solvents Z of a quadratic matrix equation Q(Z) = 0 can be constructed from
the eigenpairs (βi, χi) of the corresponding quadratic eigenvalue equation Q(βi)χi =
0, i ∈ [1, . . . , 2N ] in the diagonal form [60],

Z = MBM−1 with M = [χ1, . . . , χN ], B = diag(βi). (3.25)

The quadratic eigenvalue equation is equivalent to a generalized eigenvalue prob-
lem Aχ̃ = βCχ̃ of twice the original dimension [59]. Its 2N dimensional eigenvectors
χ̃ = (χ, βχ) are solutions of the symmetric eigenproblem(

−V̄ ∗ 0
0 V̄

)(
χ
βχ

)
= β

(
−(G0

PP )−1 V̄
V̄ 0

)(
χ
βχ

)
, (3.26)

where (G0
PP )

−1
= EF − Ĥtb

1D and Ĥtb
1D is the Hamiltonian of the one-dimensional

transverse tb strip at x = 0. The Fermi energy EF and the magnetic field B
enter (3.26) as independent parameters at which the eigenstates χ̃m and eigen-
values βm are evaluated. The longitudinal momenta of the lead states φm(x, y) =
χm(y)eikmx/

√
θm are related to the eigenvalues by the relation β = exp(ik∆x). The

orthonormalization and the completeness relations of the 2N eigenvectors χ̃m can
be formulated in terms of matrix relations, for the generalized eigenproblem,

1√
θmθn

χ̃T
mCχ̃n = 2i

km

|km|
δmn and

2N∑
m

χ̃mχ̃
T
m

θm

= 2i
km

|km|
C−1. (3.27)

With this specific choice of normalization the norm factors θm are determined
such that every propagating state carries unit flux. We note parenthetically that
the quadratic eigenvalue equation could also be applied to the semi-infinite lead at
zero B field. However, in that case, the Green’s function for quantum wires can be
calculated analytically [29, 57] by complex contour integration.



Chapter 4

Quantum wires with surface
disorder

Using the MRGM described in chapter 3, we construct a wire with surface disorder
by modeling the disordered region as a series of rectangular slices (or modules), to
which perfect semi-infinite leads are attached on both sides (see Fig. 4.1). Each of
the slices can be described by three parameters: Its width l, which we choose to
be the same for all the slices, and the vertical positions yl and yu of the lower and
upper boundary, respectively. These are chosen to fall into the ranges

yl ∈
[
−δl

2
,
δl
2

]
(4.1)

yu ∈
[
W − δu

2
,W +

δu
2

]
, (4.2)

such that the average width of the wire is given by the lead width W . δl and δu
control the variations of the boundary positions, and thus govern the strength of the
disorder. To describe wires with one-sided disorder, δl is simply set to zero, which
leads to a flat lower boundary, as shown in Fig. 4.2. The height of each module is
given by yu−yl. We choose the module heights to be uniformly distributed between
W−(δl+δu)/2 and W+(δl+δu)/2. This enables us to calculate a set of rectangular
modules and use them by shifting their positions up and down randomly within
the bounds given by δl and δu.

We proceed as follows: The Green’s functions of Nm rectangular modules with
differing heights hi are calculated, with the heights given by

hi = W − δu + δl
2

+
i− 1

Nm − 1
(δu + δl) i ∈ [1, Nm]. (4.3)

In this way we get Nm modules with equidistantly spaced heights spanning the
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Figure 4.1: Quantum wire with two-sided surface disorder (TSD)

δu

W B

l

Figure 4.2: Quantum wire with one-sided surface disorder (OSD)

range from

h1 = W − δu + δl
2

(4.4)

to

hNm = W +
δu + δl

2
. (4.5)

We then connect these Nm modules in a random sequence to form a wire. The exact
way in which this is done depends on which of the two algorithms we developed for
this purpose is used.

4.1 Algorithms

To be able to cover a wide range of possible systems, we developed two algorithms
to simulate surface disordered wires, which we term single module method and
supermodule method, respectively. The former is better suited for short lengths of
the disordered region and was thus mainly employed for the cases with two-sided
surface disorder, were the localization lengths are only moderately large. The latter
algorithm allows to calculate very long wires and was applied to wires with one-
sided surface disorder, where the localization length ξ can become prohibitively
large for the single module method.
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4.1.1 Single module method

Within the framework of the single module method we calculate the Green’s func-
tion for a quantum wire by connecting modules one at a time. Each of the modules
is chosen randomly out of the Nm existing modules, with equal probability for each
module. In the case of two-sided surface disorder, the module is randomly shifted
up or down within the bounds given by δl and δu before being connected to the
wire.

After having connected a few modules (typically between 2 and 10, but this can
be chosen freely), two leads are connected to the system (while keeping the Green’s
function for the cavity without leads in the computer memory) and the scattering
matrix for the completed system is calculated. This procedure of connecting a
few modules to the scattering region and then calculating the scattering matrix is
repeated until the desired length is reached. The time needed to calculate long
wires increases linearly with L, at least as soon as the time spent connecting the
modules to each other and then to the leads (which has to done at each desired
length) is larger than the time spent calculating the Green’s functions of the basis
modules.

4.1.2 Supermodule method

Instead of connecting single modules one by one to form a long wire, the basic idea is
to calculate ever longer wires by creating supermodules out of random permutations
of the original modules. These supermodules are, in turn, used as the building
blocks for the next step, creating the second generation of supermodules out of
permutations of the first. Repeating this process leads to an exponential growth of
the wire length. The idea of using this “exponentiation” technique to achieve the
desired wire lengths was inspired by [58], where it is used for the single slices of
standard RGM.

We proceed in the following way: As in the single module case, Nm basic modules
with uniformly distributed heights are created. Thereafter, these modules are used
to create Nm new modules, each consisting of a random permutation of the original
modules, as shown in Fig. 4.3 for the case of Nm = 4. Thus, after one step we have
Nm new supermodules consisting of Nm original modules each. Even though they
represent longer systems, each of the supermodules only requires as much computer
memory as one of the original modules. This is because we only need to keep that
part of the Green’s function available for further processing that connects the left
edge of the module to the right edge.

After n steps with this method, we have Nm supermodules, each built out of
(Nm)n original modules, i.e. the length of the supermodules (and thus the disordered
region) grows exponentially with each step. In this way, the time required to
calculate a wire with length L is proportional to log(L). Additionally, we have Nm
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Figure 4.3: Illustration of the first 3 steps of the supermodule method, with Nm = 4.

different wires of the same length at our disposal, which can be used for averaging
over configurations.

After each of the steps in the procedure, leads are connected to both sides of the
system and the transmission (reflection) matrix t (r) is calculated. One problem
that arises is that this algorithm only produces results for those wires that consist
of a number of modules that is a power of Nm. For the typical value Nm = 20, we
would only have the scattering matrix for 8 different lengths of the wire before we
have created a system with a total number of 208 = 2.5 · 1010 modules.

To counteract this problem, we also calculate the scattering matrix at interme-
diate stages while combining the modules with each other. Consider the following
example: If Nm = 20, the modules for each step are assembled out of 20 modules
from the previous step. Instead of only calculating t and r when the new super-
modules are fully assembled, we connect leads and calculate t and r whenever the
new supermodules consist of 4, 8, 12, 16, and 20 modules from the previous step.

The ultimate limit on the wire length which we can still describe with our ap-
proach is fixed by a numerical inaccuracy which reveals itself in terms of a loss of
unitarity (i.e. Tm + Rm 6= 1). Within the MRGM, there are two main sources of



CHAPTER 4. QUANTUM WIRES WITH SURFACE DISORDER 31

unitarity errors:

(1) First there is the calculation of the eigenfunctions in the lead. This error is
independent of the length of the disordered region in between the leads. We find,
however, that this error increases with increasing magnetic field. Optimization
work that went into this routine lead to a decrease of the error by two orders of
magnitude (with the error being smaller than 10−5 for typical parameter values
before optimization).

(2) The second source of error can be considered as a combination of two different
error sources that both exhibit the same behavior with increasing system size. One
is the calculation of the Green’s functions of the modules themselves and the other
is the “welding together” of the modules. Both of these lead to the same behavior
of the unitarity error, which grows with increasing wire lengths. Optimizing our
code, we were able to suppress this error source well enough that it gives rise to
much smaller inaccuracies than the error introduced by the calculation of the lead
for typical parameter values. Still, it increases exponentially with the wire length,
thereby setting an effective upper limit for the maximum length of the disordered
region that can be calculated with our method.

For the parameter values used in this report, the error is typically below 10−5

even for the longest wires we calculate, where the disordered region consists of about
1011 modules. Only for high energies and magnetic fields does the loss of unitarity
indeed become a problem. We find that at the upper limit of accessible energies
and wire lengths unitarity deficiencies differ strongly from sample to sample.

4.1.3 Comparison of the single module and the supermod-
ule method

Since the supermodule method works by using permutations of modules to create
supermodules, etc., we tested whether the results would be the same as for choosing
blocks in a truly random fashion (as in the single module version of the program).
To investigate this, we used the same wire parameters for both the single module
as well as the supermodule methods to get directly comparable results. As can be
seen in Fig. 4.4, the agreement is excellent.

As a further test we investigated whether the results obtained would still accu-
rately represent a random wire once the supermodules are longer than the localiza-
tion length (enabling the same localized state to exist many times in the wire). To
test this, a wire with one-sided surface disorder with 2 open modes was calculated
with the single module method up to a length of 10000 modules and compared with
a system with the same parameters calculated with the supermodule method. Only
2 open modes were used because of two reasons: First, the localization length is
lower at lower energies (i.e. fewer open modes), as will be shown in section 5.2. The
wire then does not have to be as long to enter the localized regime as at a higher
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Figure 4.4: Total transmission probability 〈T1〉 of mode 1, plotted against L/l ∈
[10, 104]. Note the excellent agreement between the supermodule method and the
single module method, which is equally good for the transmission probabilities Tmn

from mode n to mode m (not shown). The following values were chosen: W = 1,
l = 0.2, rc = 3, η ∈ [5.1001, 5.1901] (10 equidistant steps), Nm = 20, δu = 2/3, δl =
0. The averaging 〈. . .〉 was done over 10 energies and 20 different configurations
for each of the methods.

number of open modes. The second reason is that fewer open modes require much
less computational effort, making it possible to calculate the required lengths even
with the single module method. Fig. 4.5 shows that the results of the supermodule
method are in excellent agreement with those of the single module method over
many orders of magnitude. We conclude that the quasi-randomness invoked by
employing supermodules longer than the localization length does not prevent the
results from reflecting those of a truly random wire.

4.1.4 Two leads of different widths

To complement the analytical calculations in chapter 6, we implement the scattering
problem of two leads of different widths wL, wR attached to each other, as shown
in Fig. 4.6. The relevant parameters are the two widths wL and wR, the Fermi
momentum kF and the magnetic field B (or, equivalently, cyclotron radius rc).

This simple geometry can be used to investigate the behavior of the wave function
at the junction of two modules in a rough wire in more detail. Specifically, we
employ it to numerically calculate the transmission and reflection matrices for the
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Figure 4.5: 〈ln g〉 plotted against L/l ∈ [10 : 104]. Again, the agreement between the
results of the single module method and the supermodule method is excellent. Pa-
rameters used: W = 1, l = 0.2, rc = 3, η ∈ [2.3101, 2.4001] (10 equidistant steps),
Nm = 20, δu = 2/3, δl = 0. These were chosen such that the localization length ξ
is small enough that a wire of length L � ξ can still be calculated with the single
module method. The averaging was done over 10 energies and 20 configurations.
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Figure 4.6: Two leads

junction of two modules, as discussed in chapter 6 and use the numerical results to
complement and justify our analytical approximations.

4.2 Parameter values

There are a number of parameters that determine the properties of our quantum
wire with surface disorder. In this section we discuss these parameters and the
values chosen for them. The first group of parameters describe the geometry of the
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wire. These are the average width W of the wire, the ranges of variation δu and δl
of the wire boundary at the upper and lower side, respectively, and the length l of
each slice. Additionally, we have the total length of the wire L, which we normally
express by the number of modules, i.e. L/l. The Fermi momentum kF is specified
by η = kFW/π, where [η] gives the number of open modes in the leads if there is
no magnetic field. Although increasing the magnetic field while keeping kF fixed
decreases the number of open modes, we always stay in a parameter regime where
N = [η].

The strength of the magnetic field is determined in our units by B/c, with c the
speed of light. Since the classical dynamics is determined by the cyclotron radius
rc = ckF/B, we normally list rc instead of specifying B directly. The classical
dynamics is invariant under a change of the Fermi momentum kF as long as B is
changed in parallel such that rc is constant. Any effects we see by changing kF

must then be purely quantum mechanical.
For reasons of simplicity, we always choose W = 1 for the width of the wire. For

the one-sided rough wire, we fix the disorder amplitude as δu = 2/3 (with δl = 0)
and choose a cyclotron radius rc = 3 significantly larger than the width of the wire
W = 1 to ensure that we are not in the quantum Hall regime. As the classical
dynamics then does not depend on the Fermi momentum kF , this determines the
size of the regular island in phase space. With rc = 3, we are far away from the
regime of the quantum Hall effect [10], as classical paths have a radius of curvature
rc = 3 much larger than the width of the wire W = 1. In the case of the wire with
two-sided surface disorder, we choose δu = δl = 1/3, so that δl + δu for two-sided
surface disorder equals δu for one-sided surface disorder. Unless otherwise stated,
we always use these parameter from now on.

The length l of each slice does not have any effect on the classical phase space,
but introduces a new scale kF · l for quantum mechanics. As we later argue, this
scale does not significantly influence the dynamics for the wire with OSD, so we
choose l = 0.2.



Chapter 5

Results

Using the single module method and the supermodule method as described above,
we now analyze the behavior of wires with one-sided (OSD) and two-sided surface
disorder (TSD). In the first part of this chapter, we study wires with TSD and
compare our findings to existing results and predictions [12, 14–17, 46–48]. In the
second part, we study one-sided surface disorder and highlight the new effects that
arise.

5.1 Two-sided surface disorder

For wires with TSD, we expect that some of the predictions made for bulk disorder
(see section 2.3) are still valid, especially in the presence of a large disorder strength
(δl = δu = 1/3, with W = 1), which gives rise to strong intermode mixing. In that
case, the isotropy assumption from random matrix theory is almost fulfilled and
we expect to find clearly distinct diffusive and localized regimes. As we are dealing
with two-sided disorder here, the mean free paths and localization lengths are quite
small, so that we can use the single module method for simulating the systems
involved.

For wire lengths L less than the localization length, we expect to be in the
diffusive regime, which is characterized by an Ohmic behavior (i.e. linear increase)
of the resistance R ≡ 1/g [38–40],〈

1

g

〉
=

1

N
+

L

Nle
le � L� ξ. (5.1)

In Fig. 5.1, we show 〈1/g〉 for a wire with TSD and see very good agreement with the
expected result. The average resistance increases linearly with wire length up to a
certain length, where localization sets in and the resistance increases exponentially.
This localized regime is characterized by the following behavior

〈ln g〉 ∝ −L
ξ

L� ξ. (5.2)
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Figure 5.1: 〈1/g〉 for a wire with TSD in the diffusive regime, plotted against L/l.
The wire has 9 open modes, η ∈ [9.6001, 9.6901] (10 equidistant steps), Nm = 20.
The averaging was done over 10 energies and 100 configurations. Note that the
resistance does indeed approach 〈1/g〉 = 1/N for L→ 0, as predicted by Eq. (5.1).

As can be seen in Fig. 5.2, this expectation is again very well fulfilled. We might
conclude from these results that the wire with TSD behaves like a wire with bulk
disorder. However, in contrast to bulk disorder, we expect some mode dependence
of the transmission [12].

The higher modes, which correspond to injection of the electron at a steeper
angle, should suffer more scattering than the lower modes. To verify this, we study
the total transmission probabilities Tm of the individual modes (Fig. 5.3). We see
that the high modes indeed have transmission probabilities that are significantly
smaller than those of the low modes. Still, all modes enter the localized regime at
about the same length L ≈ ξ and then decay exponentially according to

〈lnTm〉 ∝ −
L

ξ
, (5.3)

as is nicely corroborated by the numerical data shown in Fig. 5.3.

5.1.1 Relation between mean free path le and localization
length ξ

Since we are able to define a mean free path le through Eq. (5.1) and a localization
length ξ through Eq. (5.2), we can now investigate whether these two quantities
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Figure 5.2: 〈ln g〉 for a wire with TSD in the localized regime, plotted against L/l.
The wire has 9 open modes, η ∈ [9.6001, 9.6901] (10 equidistant steps), Nm = 20.
The averaging was done over 10 energies and 100 configurations.

are related to each other as predicted by random matrix theory [11]

2ξ ≈ (βN + 2− β)le, (5.4)

where N is the number of open modes and β ∈ {1, 2, 4} is a symmetry index.
β = 4 only occurs when there is spin-orbit scattering, which is not included in our
simulation. In systems without time reversal symmetry (when B 6= 0), β = 2, while
β = 1 if time reversal symmetry is preserved (no magnetic field). The number of
open modes N directly depends on the Fermi momentum kF . We thus calculate
the mean free path and the localization length for a range of energies and compare
with the predictions.

We show the ratio 2ξ/le for the case of a weak magnetic field (red) and no
magnetic field (green) in Fig. 5.4 and find that our results do satisfy the prediction
from RMT for bulk disorder in the respect that 2ξ/le does increase linearly. Fig. 5.4
also shows fits to

2ξ = (βN + α)le. (5.5)

The results obtained by fitting do not agree with the predictions very well. The
offset α obtained by fitting is not 2−β, and the factor β is not found to be equal to
one for the case of no magnetic field. Additionally, β does not double after turning
on the magnetic field, although it the results do fit to β ≈ 2. An explanation for
this surprising result remains a future challenge.
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Figure 5.3: Total transmission probabilities Tm of the individual modes m for a wire
with TSD plotted against L/l. The wire has 9 open modes, η ∈ [9.6001, 9.6901] (10
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configurations.

0

2

4

6

8

10

12

14

16

18

20

22

1 2 3 4 5 6 7 8 9 10

2ξ
/l e

η

B = 0
B > 0

(β1 Int(η) + α1), β1 = 1.69
(β2 Int(η) + α2), β2 = 1.95

Figure 5.4: Ratio of 2ξ to le, plotted against η, for a wire with TSD with a magnetic
field (red) and without a magnetic field (green). Also shown are fits to 2ξ/le =
βN + α for both cases.



CHAPTER 5. RESULTS 39

5.2 One-sided surface disorder with a magnetic

field
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Figure 5.5: 〈g〉 for a wire with one-sided surface disorder in a magnetic field, plotted
against L/l. The wire has 14 open modes, η ∈ [14.5932, 14.6282] (6 steps), Nm =
20. The averaging was done over 6 energies and 20 configurations.

We now turn our attention to wires with one-sided surface disorder in the presence
of a magnetic field. Fig. 5.5 shows the average transmission 〈g〉 for such a wire.
Instead of localized behavior after a few hundred modules, which we saw for two-
sided surface disorder, we now observe transmission for extremely long wires, on
the order of 1010 modules (note the logarithmic scale in Fig. 5.5!)

The non-vanishing conductance through long wires can be understood by study-
ing the classical phase space of our system, which we do by evaluating the classical
Poincaré surface of section at the interface between the incoming lead and the dis-
ordered region1 (see Fig. 5.6). As the Poincaré surface of section is located in the
interior of the wire, it is not necessary to employ normal derivatives. as is otherwise
often done [61, 62].

The phase space of the system is calculated using the concept of Poincaré scat-
tering maps, which amounts to using periodic boundary conditions for the classical
electron trajectories, i.e. the electrons re-enter the wire at the left side at the same
position and with the same momentum as they leave it at the right side. Every
time a trajectory crosses the Poincaré surface of section, its transverse position y

1Many thanks to Arnd Bäcker for writing the classical simulation.
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Figure 5.6: Rough wire with the position of the Poincaré surface of section in blue.
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Figure 5.7: Poincaré surface of section (PSS) of phase space for a wire with one-
sided surface disorder in a magnetic field. Left: PSS for right-moving electrons
(vx > 0), right: PSS for left-moving electrons (vx < 0). The tori in the regular
island (orange) are those given by the semiclassical quantization condition (5.12),
determined for η = 14.6.

and momentum py are recorded. This map can be shown to be the classical analog
of the quantum mechanical scattering matrix S [20, 63, 64]. A phase space portrait
obtained in this way is shown in Fig. 5.7.

The tori in the regular island correspond to classical paths that never hit the
upper boundary, i.e. the surface with disorder, as shown in Fig. 2.5. Because of the
regular motion the canonical momentum in the x-direction px of these “skipping
orbits” is conserved, in addition to the energy, which is conserved for all trajectories.
Choosing the Landau gauge, the electromagnetic potential A corresponding to a
magnetic field B = ∇×A = −B ẑ is given by (cf. Eq. (3.11))

A = By x̂ (5.6)

We employ energy conservation to derive the relationship between ky and y for the
classical skipping orbits,

E =
1

2

(
p +

1

c
A

)2

, (5.7)
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inserting E = k2
F/2 and rc = ckF/B and solving for y, we get

y = rc

√1−
(
ky

kF

)2

− kx

kF

 . (5.8)

In order for a skipping orbit not to reach the disordered region at the top of the
wire, the highest point of the orbit (at which ky = 0) has to be lower than W−δu/2,
which determines the position of the outermost torus seen in Fig. 5.7. It follows
that states on the regular island must satisfy

kx

kF

≥ 1− ∆

ζ
, (5.9)

where we have introduced the dimensionless parameters ∆ = 1 − δu/(2W ) and
ζ = rc/W . For the parameter values used throughout this thesis, we have ∆ = 2/3
and ζ = 3, such that for states in the regular island we must have

kx

kF

≥ 7

9
(5.10)

As noted before, the classical dynamics is completely determined by the cyclotron
radius, which determines the shape of the trajectories (circular segments with radius
rc).

Quantum mechanically, we expect to find states that live on this regular island
and suffer very little scattering. These states should traverse the disordered region
relatively undisturbed, explaining why we find transport even for very large wire
lengths. To verify our assumption, we study the transverse wave functions in the
wire and calculate the corresponding Husimi distributions. The Husimi distribution
is one possible quantum mechanical analog to the classical phase space density and
is given by the projection of the wave function onto coherent minimum uncertainty
states ψ[y,ky ](y

′), which are Gaussian wave packets with 〈ŷ〉 = y and 〈k̂y〉 = ky. The
Husimi distribution H(y, ky) is given by

H(y, ky) =

∣∣∣∣∣∣
W∫

0

φ(y′)ψ[y,ky ](y
′)dy

∣∣∣∣∣∣
2

(5.11)

for a transverse wave function φ(y). By using a semiclassical (Bohr-Sommerfeld)
quantization condition for the magnetic flux enclosed by a segment of the skipping
orbit, we obtain a semiclassical condition for the allowed modes, [65]

A

h
=
BA
hc

= m− 1/4 with m = 1, 2, . . . , (5.12)
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Figure 5.8: Husimi distributions of the modes in the leads, where the classical phase
space has been overlaid. For the four lowest modes, the quantized torus determined
by Eq. (5.12) is also shown for comparison (orange line). To the right of the Husimi
distributions, the wave functions in position space are plotted.

where A is the area enclosed by the torus in the Poincaré surface of section and A
is the area enclosed by one segment of the skipping orbit.

Fig. 5.8 shows that the transverse modes χ+
m with low quantum numbersm live on

the regular island, thus confirming our expectations. Since the classical trajectories
corresponding to these states would not suffer scattering, their eventual scattering
must be explained by a purely quantum mechanical effect, which we find to be
tunneling. The tail of the wave function extends into the disordered region, so that
there is a finite, albeit small, probability of scattering.

Tunneling out of the first mode leads to localized behavior: If a small fraction ε
of the flux tunnels out of the first mode at every transition from module to module,
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the resulting transmission will be

|t11|2 ≈ (1− ε)2N ≈ exp (−2Nε) , (5.13)

where N = L/l is the number of modules in the disordered region. This implies
localized behavior with localization length ξ = l/(2ε). As shown in Fig. 5.9, the
conductance, which for long wires is dominated by the transmission of the first
mode, does indeed decrease exponentially with L.

The obtained localization length ξ is of the order of ∼ 1010 modules. This very
high value indicates that we are approaching the classical limit where quantum
mechanical wave packets behave like classical particles. To investigate this more
closely, we study the behavior of the localization length ξ as we perform this limit.
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Figure 5.9: 〈ln g〉 for a wire with one-sided surface disorder in a magnetic field,
plotted against L/l. The wire has 14 open modes, η ∈ [14.5932, 14.6282] (6 steps),
Nm = 20. The averaging was done over 6 energies and 20 configurations.

5.2.1 Quantum-to-classical crossover

Since tunneling is a quantum mechanical effect, it should vanish in the classical
limit kF → ∞ of high energies. This limit is often symbolically written ~ → 0,
meaning that all involved actions become large compared to ~, or, correspondingly,
that all length scales become large compared to the de Broglie wavelength of the
electron. In this limit, quantum mechanical wave packets should follow classical
trajectories and generally behave like classical particles according to the Ehrenfest
theorem [66, chapter 3].
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Note that due to the sharp edges at every junction of two modules, we have
a length scale that is effectively zero and thus does not become negligibly small
compared to the de Broglie wavelength even in the limit of large kF . At these
sharp edges, the wave function undergoes diffractive scattering, which should lead
to a deviation from the classical behavior that does not vanish in the classical
limit. In our specific system, the properties of motion in a magnetic field come
to our rescue, though. As we shall see, the gauge potential effectively shields the
modes that are responsible for the localized behavior from the sharp edges.

We thus proceed with studying the behavior of the localization length ξ as we
increase the Fermi momentum kF . The localization length is obtained by fitting
according to Eq. (2.15),

〈ln g〉 ∝ −L
ξ

L� ξ. (5.14)

To keep the classical dynamics unchanged, we keep rc = ckF/B constant while
taking the limit kF →∞, so that B increases along with kF . The phase space then
does not change apart from a trivial linear scaling with kF . The corresponding
classical trajectories of the electrons are exactly the same at each energy (circular
segments with radius of curvature rc). Thus, our limit is a pure quantum-to-
classical crossover, where the quantum dynamics corresponds to the same classical
dynamics for all kF . As we see in Fig. 5.10, the localization length for wires with
one-sided disorder in a magnetic field drastically increases with growing kF , in
striking contrast to the cases of OSD with B = 0 and TSD (with or without a
magnetic field).

A general prediction for tunneling from a regular island in phase space in the
classical limit states that the tunneling rate from the innermost state in a regular
island to the chaotic sea outside (which is inversely proportional to the localization
length in our case) should exponentially depend on the ratio of the area Areg of
the regular island in phase space (which corresponds to an action) and Planck’s
constant h [23–28]

γ1 ∝ exp

(
−C · Areg

h

)
, (5.15)

ξ ∝ exp

(
C · Areg

h

)
. (5.16)

This prediction was made in connection with dynamical tunneling, which is a term
used to signify that the tunneling process does not take place through a classically
forbidden potential. Instead, the tunneling connects two regions that are separated
by the dynamics of the system in a classical description [19].

Each quantum mode occupies one Planck cell in phase space, i.e. an area of h,
so that Areg/h corresponds to the number of modes that can live on the island.
Consequently, the above prediction is only valid if Areg > h, such that at least one
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mode can live on the island. We note in passing that the predictions from random
matrix theory (RMT) given in subsection 5.1.1 for two-sided surface disorder are
not applicable, since fundamental assumptions of RMT, such as the isotropy of
transmission into all outgoing channels, are violated. Additionally, because the
scattering proceeds very differently for the individual modes, it is not possible to
properly define a mean free path le, rendering any prediction that connects ξ and
le (such as Eq. (5.4)) essentially meaningless2.

Since the relative area of the regular island stays the same for all kF when we
keep the cyclotron radius rc constant, its absolute area scales in the same way as the
total area of the phase space in our Poincaré surface of section. Therefore, we do not
actually have to calculate the area of the regular island in phase space to determine
its scaling with kF . The total phase space area is given by Atot = 2pF ·W , which
in our case (atomic units, W = 1) becomes Atot = 2kF . With Areg/Atot = const,
we thus find that the localization length should increase exponentially with kF ,

ξ ∝ exp (C ′ · kF ) . (5.17)

We will find (see below) that this simple estimate already provides a good ap-
proximation to the behavior observed numerically. A detailed analytical calculation
performed in chapter 6 yields (cf. Eq. (6.81))

ξ

l
≈ (α1η

2/3 + α2) exp
[
α3η(1− α4η

−2/3)3/2
]
∝ exp (α3η) , (5.18)

where η = kFW/π and the αi are dimensionless parameters. We thus find exactly
the predicted exponential increase with kF (for details refer to chapter 6).

This result agrees with Eq. (5.17) for asymptotically large kF . The prediction
made from general results about tunneling in a mixed regular-chaotic phase space
is thus found to be valid. The appeal of Eq. (5.17) is that it predicts a purely
quantum mechanical quantity (the tunneling rate) from a simple classical quantity
(the area Areg of a regular island in phase space).

We have thus demonstrated that our quantum wire with one-sided surface disor-
der in a magnetic field is very well suited to study the quantum-to-classical crossover
of transport in a cavity with regular-chaotic motion. As we show, the mixed phase
space leads to an exponential divergence of the localization length in the classical
limit. We stress that in the case of a wire with OSD, but without a magnetic field,
or a wire with TSD regardless of the magnetic field, we do not find this behavior,
since the underlying phase space does not include a regular island in that case.
The fact that the giant localization length vanishes if we include two-sided surface
disorder proves that the system is not in the parameter regime of the quantum Hall
effect.

2Note that this reasoning also applies in the case of TSD. But since we chose a large disorder
strength, which enhances intermode mixing, the deviation from the RMT result for wires with
TSD is small enough to justify calculating an elastic mean free path by fitting.
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Figure 5.10: Localization length ξ for a wire with one-sided surface disorder in a
magnetic field (red), plotted against η. Here, the cyclotron radius rc = 3 is constant
for all energies. For comparison, ξ for wires with OSD without a magnetic field
(blue) and for wires with TSD (magenta) are shown. We also show the prediction
Eq. (5.18) for ξ from the analytical calculation in chapter 6 (green).

5.2.2 Crossover at constant magnetic field B

If we again increase the Fermi momentum kF , but now keep the magnetic field
strength B constant instead of the cyclotron radius rc, the limit we are taking is
not a pure quantum-to-classical crossover anymore, as the classical dynamics then
depends on the Fermi wavenumber kF . The relative size of the regular island in
phase space shrinks with growing kF as the cyclotron radius increases and trajec-
tories become more like straight lines. Contrary to the case of constant cyclotron
radius, we now have to calculate the area of the regular island to know how it scales
with kF . To do so, we simply integrate the relation (5.8) over the allowed values
for ky in the regular island, inserting the condition for the outermost stable orbit
for kx. The integral corresponds to a classical action S =

∫
pdq and is found to be

Areg = kF rc

[
arccos(1− ν)− (1− ν)

√
1− (1− ν)2

]
(5.19a)

ν =
1

rc

(
W − δu

2

)
. (5.19b)

Since we are again interested in the limit of large Fermi momentum kF , but now
for constant B, we insert rc = ckF/B in Eq. (5.19) and expand it to leading order
in kF . We find that in the limit of large kF the area of the regular island now
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increases with the square root of kF ,

Areg ∝
√
kF . (5.20)

Combining this result with Eq. (5.15), the localization length should then increase
as

ξ ∝ exp
(
C ′′ ·

√
kF

)
. (5.21)

Accordingly, our result from the analytical calculation in chapter 6 predicts the
same behavior in the limit of large kF (cf. Eq. (6.84)):

ξ

l
≈
(
β1η

1/3 + β2

)
exp

[
β3
√
η(1− β4η

−1/3)3/2
]
∝ exp

(
β3η

1/2
)

(5.22)

where the βi are dimensionless parameters. As we see in Fig. 5.11, the localization
length indeed shows the behavior predicted in Eq. (5.22).
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Figure 5.11: ξ for a wire with one-sided surface disorder in a magnetic field, plotted
against

√
η. In this figure, the magnetic field B is held constant. We also show the

prediction Eq. (5.22) for ξ from the analytical calculation in chapter 6.

5.2.3 Tm

We now turn our attention to the conductance for wires shorter than the localization
length ξ. In Fig. 5.5, three distinct steps can be seen in the average conductance
〈g〉, following a drastic decrease for short wire lengths. We attribute this decrease
to those high modes which lie in the chaotic sea outside the regular island. The
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steps we observe for longer wires should then correspond to the modes which tunnel
away from the island one after the other, with the tunneling rate getting bigger the
closer a state lives to the chaotic sea. To verify these assumptions, we study the
transmission probabilities Tm of the individual modes. Since we expect the modes
to tunnel out of the island and thus decay exponentially, we investigate exp(〈lnTm〉)
in Fig. 5.12. Since the modes on the regular island only couple weakly to other
modes, we expect the total transmissions Tm of each of the modes to behave as the
conductance g of a one-mode wire, which implies a log-normal distribution of Tm

for 〈Tm〉 � 1. Therefore, exp(〈lnTm〉) is the correct average.
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Figure 5.12: Total transmission probabilities Tm of the individual modes m for a
wire with OSD, plotted against L/l. η ∈ [14.5932, 14.6282] (6 steps). The averaging
was done over 6 energies and 20 configurations.

We indeed find that the low modes tunnel out of the regular island one after
the other. Additionally, we can perform a fitting procedure analogous to the one
for the localization length ξ above and define a mode localization length ξm for the
modes on the island,

〈lnTm〉 ∝ −
L

ξm
, (5.23)

which corresponds to the inverse tunneling rate of mode m out of the island. The
mode localization lengths decrease for higher modes, ξm < ξm−1, as the coupling of
the mode to the chaotic sea increases. In position space, we see that the exponential
tail of the wave function reaches farther into the forbidden region the higher the
mode number m (cf. Fig. 5.8). The fits are shown along with the numerical results
in Fig. 5.12, demonstrating that the decay of the transmission probabilities Tm is
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indeed exponential for the low modes in the island. For the parameters shown in
the figure, this fit is good for m ≤ 4. As there is a finite probability of tunneling
into a lower mode, the exponential decrease of the transmission probability of a
mode does not continue to arbitrary wire lengths for m 6= 1. A small fraction
of the incoming flux in mode m tunnels to the lower mode m − 1. Once in the
lower mode, this fraction of the incoming flux will also decay exponentially with
increasing wire length, but with a localization length ξm−1 > ξm. For some length
scale the transmission into mode m − 1 is then the dominant contribution to the
transport of mode m, until this part itself becomes smaller than the transmission
into mode m− 2, etc. until finally only transmission into mode 1 is left.

Fig. 5.13 shows the stepwise decrease of the transmission of the higher modes.
Since the tunneling probabilities between the modes are very small, we have to use
a logarithmic scale to see this behavior. In Fig. 5.14 the transmission probabilities
Tm4 from the fourth mode into the m-th mode are shown to further verify the
above description. The transmission of the fourth mode is indeed dominated by
T44 for short wire lengths, while for increasing lengths, the dominating parts of T4

are successively T34, T24, and T14.
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Figure 5.13: Total transmission probabilities Tm of the individual modes m for a
wire with OSD on a logarithmic scale, plotted against L/l. η ∈ [14.5932, 14.6282]
(6 steps). The averaging was done over 6 energies and 20 configurations.
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Figure 5.14: Transmission probabilities Tm4 from mode 4 to mode m for a wire with
OSD, plotted against L/l. η ∈ [14.5932, 14.6282] (6 steps). The averaging was done
over 6 energies and 20 configurations.

5.2.4 Tm1

All modes (apart from the first mode) decay in steps, where the decay takes place
with the localization length ξm of the mode dominating transmission at each length
scale. In contrast, the transmission of the first mode is always dominated by T11,
but there is of course some transmission into the higher modes. Fig. 5.15 shows the
transmission probabilities Tm1 from the first mode to mode m (for mode m still on
the regular island). In this section, we explain the intricate pattern seen in these
transmission probabilities with a simplified model proposed by R. Ketzmerick that
captures the essential features surprisingly well. This model predicts the transmis-
sion probability Tm1 for transmission from the first mode in the left lead to mode
m in the right lead, under the condition that mode m is still on the regular island,
by employing ideas from chaos-assisted tunneling [24].

To find the flux transmitted into outgoing mode m in the right lead under the
assumption that the incoming flux in the left lead was in mode 1, we start out
with the realization that there are two possible ways of coupling between the first
and the m-th mode that are of the same order. The first is the direct coupling
between the two modes, while the second is the two-step process of first tunneling
to the chaotic sea and then, after some propagation in the chaotic sea, tunneling to
mode m. The direct intermode coupling between the modes on the regular island
is of order ξ−1

1 ξ−1
m . This can be understood by a simple argument: The coupling

between modes is induced by the disorder at the top of the wire. Modes on the
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Figure 5.15: Transmission probabilities Tm1 from mode 1 to mode m for a wire with
OSD, plotted against L/l. η ∈ [14.5932, 14.6282] (6 steps). The averaging was done
over 6 energies and 20 configurations.

regular island only have an exponential tail that reaches into the disordered region,
with the amount of flux in the tail roughly given by ξ−1

m . The direct coupling
between the first mode and another mode on the regular island is therefore on the
order of ξ−1

1 ξ−1
m . On the other hand, modes in the chaotic sea are not suppressed

at the upper boundary, so that coupling between island modes and chaotic modes
is of order ξ−1

m . This leads to the same order of coupling for the two-step process of
first tunneling to the chaotic sea (order ξ−1

1 ) and then tunneling to mode m (order
ξ−1
m ) as for direct coupling between island modes (order ξ−1

1 ξ−1
m ).

For the second process, the coupling between the first mode and the other modes
actually proceeds in three steps: (1) Part of the right-moving island mode tunnels
into the phase space region of the left-moving states at the upper side of the wire.
(2) That part stays in the left-moving modes, propagating along the rough surface
at the top of the wire. As the classical motion of the left-moving modes is purely
chaotic (as seen in Fig. 5.7 for vx < 0), there is strong intermode mixing. (3) The
left-moving modes then couple to the right-moving modes on the bottom side of the
wire. This coupling into the regular island should proceed with the same tunneling
rate as the coupling from the island to the chaotic sea, i.e. directly proportional to
ξ−1
m .

Even though these two processes can interfere, the relative phase is random
because of the chaoticity of phase space outside the regular island, so that we
can simply perform an incoherent sum to obtain our result. Additionally, the
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two processes are physically distinguishable. For example, the second (three-step)
process could be observed by measuring the charge density at the rough side of the
wire.

As long as the wire is shorter than the total localization length ξ = ξ1, the
transmission probability within the first mode will be almost one, T11 ≈ 1. We
are then interested in the flux within the chaotic region of phase space. As a
first approximation, we assume that all flux in the chaotic region moves to the
left without being scattered into a right-moving mode. This approximation can
be justified by the fact that in the chaotic region of phase space we must have
directed chaos [18]. The term “directed chaos” is used to refer to systems in which
the time-averaged velocity of almost all chaotic trajectories approaches a non-zero
constant vch for long times, which will be negative (i.e. directed to the left) in our
system [18]. Another possibility to see this is that flux in the chaotic region will,
on average, fill the chaotic region of phase space uniformly. A significant part of
the right-moving part of phase space is occupied by the regular island, into which
the chaotic modes can only enter by tunneling. This leads to an overall diffusion
to the left for flux in the chaotic sea. In our simple model, we assume that all flux
in the chaotic region moves to the left.

The total flux in the chaotic sea in module n (where n counts the number of
modules from the left lead) is then given by the sum of the flux contributions that
were reflected at a module position n′ > n. For a given wire length L this is (with
all lengths in units of l in this section, such that L is equal to the number of total
modules in the wire)

Pleft(n) ≈
L∑

n′>n

1

ξ1
=
L− n

ξ1
, (5.24)

where we use that ξ−1
m corresponds to the tunneling rate of the m-th mode out of

the island (cf. Eq. (5.13)).

The fraction of the flux that tunnels into the right-moving mode m in the regular
island at each module is then approximately Pleft(n)/ξm + 1/(ξ1ξm), where the
second factor describes the direct coupling between the modes. To find the flux
that arrives at the right lead, we have to sum over all fractions that tunnel into
mode m at some point, weighted with the probability of transmission from n to L,
which we just take as an exponential decay with ξm.

Tm1 ≈
L∑

n=0

L− n+ 1

ξ1ξm
exp

(
−L− n

ξm

)
(5.25)

We can now distinguish between two cases: (1) If the wire length L is much
smaller than the localization length ξm of the mode in question, we can set the
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Figure 5.16: Tm1 together with predictions (Eqs. 5.26 and 5.28) from the model
proposed by R. Ketzmerick. For wires in the localized regime (L > ξ1), we show
exp(〈lnTm1〉), while for L < ξ1, we show 〈Tm1〉. For L� ξm, the agreement of the
data with the prediction (5.28) is excellent, for shorter wires the agreement with
(5.26) is good. The only parameters that enter as fits are the ξm.

exponential term in the sum to one and get (to highest order in L)

Tm1 ≈
L2

2ξ1ξm
L� ξm, (5.26)

(2) alternatively, when the length L of the wire is much larger than ξm, we extend
the sum to start at minus infinity, which will only add exponentially small terms.
This leads to

Tm1 ≈
ξm
ξ1

ξm � L� ξ1, (5.27)

where we have assumed that ξm � 1, so that we only keep the leading term of
the series expansion of our full result (not shown). For wires longer than the total
localization length ξ = ξ1, we realize that all the relevant dynamics takes place in
a section of the wire of length ≈ ξm. Since the localization length of mode m > 1
is much smaller than the localization length of the first mode, ξm � ξ1, we expect
that the transmission probabilities into higher modes just follow T11, such that

Tm1 ≈
ξm
ξ1
· T11 ≈

ξm
ξ1
· exp

(
−L
ξ1

)
L� ξm, (5.28)
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As the transmission probability of the first mode into itself is almost one for wires
shorter than the localization length, T11 ≈ 1, Eq. (5.28) can be used instead of
Eq. (5.27) for all wire lengths L� ξm.

Our simple model predicts that the transmission probability from the first mode
to the m-th mode on the regular island will at first increase quadratically with the
length of the wire until the wire is as long as the localization length ξm of the m-th
mode. At that point, the transmission is predicted to saturate at a value given by
the ratio of the two localization lengths ξm and ξ1, until the wire is long enough
that the localized regime is entered, where Tm1 follows the exponential decrease of
T11.

Note that this model does not include any separate fit parameters. The localiza-
tion lengths ξm are obtained by fitting to the exponential decay of the transmission
probabilities Tm of the individual modes, which have no direct connection to the
model discussed here.

For comparison of the predictions to the numerical results, it is important which
average is taken. Since Tm1 is closely coupled to T11, we assume that its distrib-
ution is the same as that for T11. For wires in the localized regime (L � ξ1), the
Tm1 should then be log-normally distributed, such that exp(〈lnTm1〉) is the correct
average. For shorter wires, the Tm1 should follow a Rayleigh distribution [12], such
that 〈Tm1〉 is the more appropriate average.
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31
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Figure 5.17: Ratio T21/T31 compared to the predictions Eq. (5.29) and Eq. (5.30).
The agreement is excellent. As before, we use 〈Tm1〉 for wires shorter than the
localization length and exp(〈lnTm1〉) for longer wires. As in Fig. 5.16, the only
parameters that enter as fits are the ξm.
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In Fig. 5.16, our fit-parameter free prediction is compared to the numerical re-
sults for the probabilities T21 (T31) for transmission from the first to the second
(third) mode, which are still well inside the regular island for the parameters used
(cf. Fig. 5.8). As can clearly be observed, our simple model captures the essential
dynamics and predicts the correct behavior for the Tm1.

In particular, the ratio of transmission into two different modes on the regular
island is predicted to behave in the following way,

Tn1

Tm1

=
ξm
ξn

L� ξm, ξn, (5.29)

Tn1

Tm1

=
ξn
ξm

L� ξm, ξn. (5.30)

In Fig. 5.17, we show that the ratio between the transmission probabilities T21

and T31 does indeed display the behavior predicted by our model. The agreement is
remarkably good. Compared to Fig. 5.16, the quantitative agreement is improved
since any common prefactors that we neglected in our simple model drop out.



Chapter 6

Analytical calculations

In this chapter we perform some analytical calculations with the aim of deriving
an expression for the localization length ξ in the quasi-classical regime, i.e. for
large Fermi momentum kF . Since we will extensively use the properties of the
transverse modes in a perfect lead, we first discuss these modes and their properties
in some detail1. Following that, we employ their properties, together with a WKB
approximation, in the derivation of the analytical expression Eq. (5.18) [Eq. (5.22)]
for the localization length ξ in the limit of large kF with constant cyclotron radius
rc [constant magnetic field strength B].

6.1 Transverse modes in a perfect lead

To investigate the properties of the transverse modes in an infinitely long perfect
lead subject to a perpendicular magnetic field in the negative z-direction (B =
−B ẑ), we derive the effective Hamiltonian Hy that, together with the boundary
conditions, determines their properties. We start from the Hamiltonian of a free
particle in the lead, using the Landau gauge as in Eq. (3.11) (A = By x̂),

H =
1

2

(
p +

1

c
A

)2

, (6.1a)

H =
1

2

(
p2

x + p2
y + 2

B

c
ypx +

B2

c2
y2

)
. (6.1b)

The HamiltonianH still commutes with the longitudinal momentum px, [H, px] = 0,
irrespective of the term containing a product of y and px, as [y, px] = 0. This means
that the wave function can be separated into a transverse and a longitudinal part
even in the presence of a magnetic field,

φ(x, y) = χ(y) exp(ikxx). (6.2)

1Where we repeat some parts of section 3.2 for clarity.
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Note that the separability of the Hamiltonian depends on the specific gauge. By
choosing the Landau gauge we ensure that kx remains a constant of motion in the
disorder-free lead.

For clarity we mention that p is the canonical momentum, which in this case does
not correspond to the kinetic momentum pkin = p + A/c. Note that the energy
of a free particle does not depend on the magnetic field, such that only the kinetic
momentum enters into the energy, i.e. Ekin = p2

kin/2. On the other hand, the quan-
tum mechanical commutation rules (and therefore the correspondence principles)
are valid for the canonical, not for the kinetic momentum.

Inserting the factorized wave function (6.2) into the Schrödinger equation Hφ =
EFφ and dividing by exp(ikxx), we obtain

1

2

[
k2

x + p2
y + 2

B

c
ykx +

B2

c2
y2

]
χ(y) = EFχ(y), (6.3)[

p2
y

2
+
B2

2c2

(
ckx

B
+ y

)2

− EF

]
χ(y) = 0. (6.4)

Inserting the cyclotron radius rc = ckF/B,[
p2

y

2
+
k2

F

2r2
c

(
rckx

kF

+ y

)2

− EF

]
χ(y) = 0. (6.5)

Using EF = k2
F/2 and defining y0 = −rckx/kF , we finally arrive at[

p2
y

2
+ EF

((
y − y0

rc

)2

− 1

)]
χ(y) = 0, (6.6)

Hy
(EF ,y0)χ(y) = 0. (6.7)

The transverse wave function satisfies an effective Schrödinger equation for a
particle at energy E = 0 in a quadratic potential that has a minimum at y0 =
−rckx/kF . In other words, the longitudinal canonical momentum determines the
potential that the transverse wave function is subject to. By imposing boundary
conditions, χ(y= 0) = χ(y=w) = 0, we find that solutions only exist for certain
values kx,n, or equivalently, y0,n.

From the mirror symmetry of the system around y = w/2 follows that for each
y+

0,n < w/2, there must also be a solution at the same energy with y−0,n = w−y+
0,n. If

we rewrite this condition for the kx,n, we find that k−x,n = −kFw/rc−k+
x,n. If we had

chosen our wire to be symmetric around y = 0, this condition would have simplified
to k−x,n = −k+

x,n. However, since we later want to connect two leads with different
widths but smooth lower boundary (see Fig. 6.2), this choice of coordinates would
only be convenient for one of the two leads.
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6.1.1 Orthogonality condition

Because of the magnetic field, the transverse eigenstates in the leads do not satisfy
the usual orthogonality relation

w∫
0

χ∗n(y)χm(y)dy = δnm. (6.8)

Instead, they satisfy a relation that can be derived from current conservation for
the flux-carrying modes [36], but also follows from application of Sturm-Liouville
analysis to Eq. (6.7) [51],

(k±x,n − k±x,m)In±,m± = 0, (6.9a)

In±,m± ≡
w∫

0

(
k±x,n + k±x,m + 2kF

y

rc

)
χ±n (y)χ±m(y)dy. (6.9b)

From this follows that the integral In±,m± satisfies

In±,m± = ±δnm, (6.10)

assuming that the wave functions are normalized such that each flux-carrying mode
carries unit flux, which was the requirement to have a unitary scattering matrix.
For notational simplicity, we have absorbed the normalization factors θ used in
earlier chapters into the wave functions χ and normalize these to unit flux directly.

6.2 Calculation of the localization length ξ

Our goal in this chapter is to find an analytical expression for the localization length
ξ for the case of the one-sided rough wire. As we have seen, the total localization
length ξ is identical to the localization length ξ1 of the lowest mode. We proceed by
calculating the coefficients for transport by the first mode at each junction of two
modules and then connect these scattering amplitudes to get the total transmission
of the first mode.

The total transmission matrix tc of a system created by connecting two subsys-
tems (1 and 2) can be calculated from the transmission and reflection matrices
t1, t2, r′1, r2 of the two subsystems, where ti is the transmission matrix from left
to right and ri (r′i) is the reflection matrix for a particle incident from the left
(right) (cf. Fig. 6.1). The transmission matrix of the combined system is given by
tc = t2(1− r′1r2)−1t1, which we rewrite to

tc = t2

[
∞∑

n=0

(
r′1r2

)n]
t1 = t2t1 + t2r′1r2t1 + . . . . (6.11)
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Figure 6.1: Connecting two systems. Transmission proceeds by transmission through
the first system (t1), an arbitrary number of reflections between the two systems
(each of which gives a term r′1r2) and then transmission through the second system
(t2). This leads to Eq. (6.11).

The transmission of the whole system is now given by the coherent sum of an
infinite number of terms, where each term can be given a simple physical inter-
pretation. We have to read each term right to left: The first term corresponds
to direct transmission through both subsystems. In the second term, the wave is
transmitted through the first system, then reflected in the second system, again
reflected in the first system, and then finally makes its way out through the second
system. The additional terms describe the same process with an increasing number
of reflections inside the system. For the transmission of the first mode, we neglect
all terms featuring reflection coefficients since they involve two tunneling processes
– out of the regular island for the first reflection and then back into the regular
island. This leaves us with

tc11 ≈ t2t1 =

N2∑
m=1

t21mt
1
m1, (6.12)

where N2 is the number of modes at the junction of the two systems. Them-th term
describes transmission from the first mode to the m-th mode at the first junction
and then transmission from the m-th mode to the first mode at the second junction.
We drop all but the first term, which amounts to neglecting contributions from
tunneling to another mode and then back to the first mode. These contributions
will be very small for those modes m that are on the regular island, while for
modes in the chaotic part of phase space the contributions will be of order O(ε)
(with t11 = 1 − ε as defined below). Since their phases are random, though, they
tend to average out, so that we neglect them.

Thus, we find that for transmission across two module junctions the transmission
of the first mode into itself is

tc11 ≈ t211t
1
11, (6.13)
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This implies that t11 of the whole wire composed of N modules will be approxi-
mately

t11 ≈
N∏

i=0

t
(i,i+1)
11 , (6.14)

where t(i,i+1) is the transmission matrix from module i to module i+ 1, with i = 0
and i = N + 1 labeling the left and right leads, respectively. Since the transverse
wave functions of the first mode only have an exponential tail that reaches the upper
boundary, we expect that t

(i,i+1)
11 will be almost one, so that we write (neglecting

phases)

t
(i,i+1)
11 = 1− ε(i,i+1). (6.15)

Additionally, from the Onsager-Casimir symmetry relations follows that the trans-
mission t11 only depends on the two heights hi and hi+1, but not on their ordering,
i.e. it does not matter whether the first or the second module has the greater height.
Using this fact and recognizing that t

(i,i+1)
11 will depend mostly on the height of the

lower of the two modules, we have

t
(i,i+1)
11 ≈ t

min(hi,hi+1)
11 . (6.16)

In this equation we have neglected the case that both modules are of equal height
(where t11 = 1), and Eq. (6.14) becomes

t11 ≈
N∏

i=0

t
(i,i+1)
11 ≈

M∏
j=1

(
t
hj

11

)NPj

, (6.17)

where M is the number of distinct modules we use and Pj is the probability that a
module with height hj occurs as the lower of two adjacent modules. Rearranging
terms, we get the following expression for t11:

t11 ≈
M∏

j=1

(
1− εhj

)NPj ≈ exp(−N
M∑

j=1

Pjεhj
). (6.18)

Considering that in our system the modules are always arranged in permutations,
i.e. that the same module never occurs twice in a row, the probability Pi,j of finding
modules with height hi and hj in sequence is

Pi,j =
1

M(M − 1)
. (6.19)

With the supermodule method, the modules indeed only occur in permutations,
with the exception of the boundaries of the supermodules, where it is possible that
the same module appears twice in a row. The small correction to Pi,j caused by
this can be safely neglected, though.
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The probability that a module with height hi is the lower of a pair of modules is
then given by

Pj =
M∑

i=j+1

2Pi,j =
2(M − j)

M(M − 1)
, (6.20)

where the factor 2 occurs because we do not distinguish which module comes first.
We use again that the first mode is exponentially suppressed at the upper bound-

ary, from which follows that εh1 belonging to the module with the lowest height
is the dominant contribution in the above sum. Neglecting all other contributions
and inserting the explicit expression (6.20) for Pj, t11 is simply given by

t11 ≈ exp (−2NP1εh1) = exp

(
− 2L

Ml
εh1

)
. (6.21)

For very long one-sided rough wires the conductance g ≈ |t11|2 decays according
to g ∝ exp(−L/ξ), allowing us to extract the localization length ξ as

ξ ≈ Ml

4εh1

. (6.22)

RwL
y

x
B w

Figure 6.2: Two leads

To determine εh1 we require an expression for the transmission amplitude t11
from one module to the next. To calculate this quantity, we consider the simple
system of two leads of different width wL, wR shown in Fig. 6.2, with a wave coming
in from the left in the first mode. The wave functions ΨL in the left lead and ΨR

in the right lead are given by

ΨL(x, y) = φL+
1 (x, y) +

∞∑
m=1

rm1φ
L−
m (x, y), (6.23)

ΨR(x, y) =
∞∑

m=1

tm1φ
R+
m (x, y), (6.24)

where

φS±
m (x, y) = χS±

n (y) exp
(
ikS±

x,nx
)
. (6.25)
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We now continue our calculation of t11 by matching wave functions at x = 0.
This demands that

ΨL(x=0, y) = ΨR(x=0, y),

χL+
1 (y) +

∞∑
m=1

rm1χ
L−
m (y) =

∞∑
m=1

tm1χ
R+
m (y),

(6.26)

and

∂ΨL

∂x
(x=0, y) =

∂ΨR

∂x
(x=0, y),

kL+
x,1χ

L+
1 (y) +

∞∑
m=1

rm1k
L−
x,mχ

L−
m (y) =

∞∑
m=1

tm1k
R+
x,mχ

R+
m (y).

(6.27)

In order to extract t11, we multiply Eq. (6.26) by (kR+
x,1 + 2kFy/rc) and add it to

Eq. (6.27). This then gives

(
kL+

x,1 + kR+
x,1 + 2kF

y

rc

)
χL+

1 (y) +
∞∑

m=1

rm1

(
kL−

x,m + kR+
x,1 + 2kF

y

rc

)
χL−

m (y) =

=
∞∑

m=1

tm1

(
kR+

x,m + kR+
x,1 + 2kF

y

rc

)
χR+

m (y). (6.28)

We multiply this equation by χR+
1 (y) and integrate from y = 0 to y = ∞. In this

way, the right hand side reduces to the generalized orthogonality relation (6.9) for
the transverse wave functions in the lead. Therefore, the right hand side simplifies
to t11 after evaluation of the integral and we find

t11 = tA11 + tB11,

tA11 =

w<∫
0

(
kL+

x,1 + kR+
x,1 + 2kF

y

rc

)
χL+

1 (y)χR+
1 (y)dy,

tB11 =

w<∫
0

∞∑
m=1

rm1

(
kL−

x,m + kR+
x,1 + 2kF

y

rc

)
χL−

m (y)χR+
1 (y)dy.

(6.29)

where w< is the smaller of the two lead widths wL, wR. For sufficiently high
magnetic field B and Fermi energy kF , the wave functions in the first mode are
almost equal, so that we expect tA11 to be almost one and define

tA11 ≡ 1− εA. (6.30)
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The second term (tB11) can be estimated to be of order O(εA) by realizing that
the unitarity constraint fixes the rm1 to be of O(

√
ε) for the flux-carrying modes.

We insert t11 = 1− ε into the unitarity condition

1 =
N∑

m=1

(
|tm1|2 + |rm1|2

)
, (6.31)

2ε =
N∑

m=2

|tm1|2 +
N∑

m=1

|rm1|2 , (6.32)

and obtain that the rm1 must be O(
√
ε). The integrals in tB11 approximately corre-

spond to the orthogonality condition (6.9), so that they are very small. They can
be estimated to be of order O(

√
ε) by using that the difference between the first

modes on the left and right side is of order O(
√
ε), while the left-moving modes are

of order O(1) at the upper side of the wire, where χR+
1 (y) differs from χL+

1 (y). Uti-
lizing that the integral and rm1 are both O(

√
ε), the whole term should be of order

O(ε). Still, the analytical evaluation of this term remains a challenge as it contains
the factors rm1 for which no closed analytical solution is known. To investigate the
importance of tB11 as compared to tA11, the numerical simulation of the system of two
leads with the MRGM was employed to calculate these two terms. We find that
the magnitude of tB11 is about 0.2εA, quite independent of the Fermi energy EF and
the magnetic field B. We thus neglect tB11 in the following, keeping in mind that
this will introduce an error of about 20% in our result for the localization length.

From the Onsager-Casimir relations (2.11a) follows that the transmission ampli-
tude t11 from the first mode to the first mode will be independent of whether we
go from a wide lead to a narrow lead or vice versa. This follows from the fact that
transmission from a lead with width w1 to a lead with width w2 can be described
either by (1) injection from the left with magnetic field B = −B ẑ in a system with
lead widths wL = w1 and wR = w2 or by (2) injection from the right at B = B ẑ
in a system with lead widths wL = w2 and wR = w1. Since both system (1) and
system (2) describe the same physical situation, it follows that t11 (transmission
from the first mode on the left to the first mode on the right) of system (1) is equal
to t′11 (transmission from the first mode on the right to the first mode on the left)
of system (2). Eq. (2.11a) then states that for system (2),

t11(−B ẑ) = t′11(B ẑ), (6.33)

so that t11 is proven to be the same for transmission from a wide to a narrow lead
as for transmission from a narrow to a wide lead. This is illustrated in Fig. 6.3.

Since tA11 just contains the product of the two first transverse modes, it is also
independent of the order of the leads. From this follows that tB11 is also invariant
with respect to an exchange of the leads. Without loss of generality, we can therefore
choose wL < wR for the further calculation.
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Figure 6.3: Illustration of the Onsager-Casimir relations and symmetry considera-
tions. Systems (1) and (2) are equivalent, tmn(1) = t′mn(2), they just correspond to
looking at the same problem from the −z and z-direction, respectively. The upper
row is connected to the lower row by the Onsager-Casimir relations (2.11a). This
leads to t11 for the upper left system being equal to t11 for the lower right system,
i.e. t11 is invariant whether we go from a wide to a narrow or from a narrow to a
wide lead.

Since the first mode in the (wider) right lead “feels” the upper boundary expo-
nentially less than the first mode in the (narrower) left lead, we replace it by the
wave function of the first transverse mode in an infinitely wide lead,

χR+
1 (y) ≈ χ∞+

1 (y). (6.34)

We then write the wave function in the left lead as

χL+
1 (y) = N ′ (χ∞+

1 (y)− σ(y)
)
, (6.35)

and the longitudinal momentum as

kL+
x,1 = k∞+

x,1 + ∆kx, (6.36)

where σ(y) is negligible except near y = wL and is given by σ(y) = χ∞+
1 (y) for

y > wL, such that χL+
1 (y) = 0 in that region. N ′ is a normalization factor, which

will be close to one. The change in the longitudinal momentum ∆kx imposed by a
change in the lead width is very small, and is numerically found to be O(εA). In
Fig. 6.4, we sketch χ∞+

1 (y) and σ(y).

Inserting (6.35) and (6.36) into Eq. (6.29) and extending the integral to y=∞



CHAPTER 6. ANALYTICAL CALCULATIONS 65

0

0.05

0.1

0.15

0.2

0.25

0 0.2 0.4 0.6 wL 0.8 1

y

χ1
2

σ2

Figure 6.4: Sketch of the wave function in an infinite lead χ∞+
1 (y) and the correction

σ(y) for finite lead width wL. This plot is done at sufficiently low energy to ensure
that σ is visible with a linear scale.

(considering that the wave function on the left is zero for y > wL), we have

tA11 =

∞∫
0

(
2k∞+

x,1 + ∆kx + 2kF
y

rc

)
N ′ (χ∞+

1 (y)− σ(y)
)
χ∞+

1 (y)dy, (6.37)

tA11 = N ′

[
1−

∞∫
0

(
2k∞+

x,1 + 2kF
y

rc

)
σ(y)χ∞+

1 (y)dy

︸ ︷︷ ︸
A

+

+ ∆kx

∞∫
0

(
χ∞+

1 (y)− σ(y)
)
χ∞+

1 (y)dy

︸ ︷︷ ︸
B

]
.

(6.38)

For simplicity of notation, we name the two above integrals A and B, such that

tA11 = N ′ [1− A+ ∆kxB] . (6.39)
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To calculate N ′, we use the flux normalization condition from Eq. (6.10),

1 = N ′2

∞∫
0

(
2k∞+

x,1 + 2∆kx + 2kF
y

rc

)(
χ∞+

1 (y)− σ(y)
)2
, (6.40)

1 = N ′2

[
1− 2

∞∫
0

(
2k∞+

x,1 + 2kF
y

rc

)
σ(y)χ∞+

1 (y)dy

︸ ︷︷ ︸
A

+

+

∞∫
0

(
2k∞+

x,1 + 2kF
y

rc

)
σ(y)2dy

︸ ︷︷ ︸
C

+

+ 2∆kx

∞∫
0

(
χ∞+

1 (y)− σ(y)
)2

dy

︸ ︷︷ ︸
B′

]
.

(6.41)

Introducing the short-hand notation C and B′ for the two last integrals in the above
equation, we can write

1 = N ′2 [1− 2A+ C + 2∆kxB
′] . (6.42)

Inserting this into our formula for tA11, we obtain

tA11 =
1− A+ ∆kxB√

1− 2A+ 2∆kxB′ + C
. (6.43)

Since all the integrals A-C are much smaller than one, we expand the square root
into a Taylor series and only keep terms to the first order,

tA11 ≈ (1− A+ ∆kxB)

(
1 + A−∆kxB

′ − 1

2
C

)
, (6.44)

tA11 ≈ 1− 1

2
C + ∆kx (B −B′) . (6.45)

Inserting the expressions for B and B′, the second term becomes

∆kx(B −B′) = ∆kx

∞∫
0

(
χ∞+

1 (y)σ(y)− σ(y)2
)
dy, (6.46)

which is of higher order than integral C since σ(y) is almost zero where the wave
function has its maximum and ∆kx is already O(εA). Dropping this term, we arrive
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at a simple expression for tA11, or equivalently εA, to first order:

tA11 ≈ 1−
∞∫

0

(
k∞+

x,1 + kF
y

rc

)
σ(y)2dy, (6.47a)

εA ≈
∞∫

0

(
k∞+

x,1 + kF
y

rc

)
σ(y)2dy. (6.47b)

To calculate this integral, we need an expression for σ(y). By inserting Eq. (6.35)
into Eq. (6.7) and imposing the boundary conditions χL+

1 (y = 0) = χL+
1 (y = wL) =

0, we find that σ(y) has to be an eigenfunction of the same Hamiltonian Hy as
χL+

1 (y), but with boundary conditions σ(0) = σ(∞) = 0 and σ(wL) = χ∞+
1 (wL).

Since the upper boundary wL is already deep in the classically forbidden region, we
use a WKB approximation (see chapter 7 in [67]) for our solution for σ(y).

σ(y) = χ∞+
1 (wL)

√
ρ(wL)

ρ(y)
×


exp

(
−

wL∫
y

ρ(y′)dy′

)
y < wL

exp

(
−

y∫
wL

ρ(y′)dy′

)
y > wL

, (6.48)

ρ(y) =
√

2[V (y)− E] = kF

√
V (y)/EF , (6.49)

where we have used that the effective 1D Schrödinger equation has eigenvalue E = 0
(cf. Eq. (6.7)). Inserting the above expression into Eq. (6.47a), we find

εA =
[
χ∞+

1 (wL)
]2


wL∫
0

(
k∞+

x,1 + kF
y

rc

) exp

(
−2

wL∫
y

ρ(y′)dy′

)
ρ(y)/ρ(wL)

dy+

+

∞∫
wL

(
k∞+

x,1 + kF
y

rc

) exp

(
−2

y∫
wL

ρ(y′)dy′

)
ρ(y)/ρ(wL)

dy

 . (6.50)

We extend the first integral to start at negative infinity and perform the substi-
tutions z′ = wL − y′, z = wL − y in the first integral, and similar substitutions
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z′ = y′ − wL, z = y − wL in the second integral. This leads to

εA =
(
χ∞+

1 (wL)
)2


∞∫
0

(
k∞+

x,1 + kF
wL − z

rc

) exp

(
−2

z∫
0

ρ(wL−z′)dz′
)

ρ(wL−z)/ρ(wL)
dz+

+

∞∫
0

(
k∞+

x,1 + kF
wL + z

rc

) exp

(
−2

z∫
0

ρ(wL+z′)dz′
)

ρ(wL+z)/ρ(wL)
dz

 . (6.51)

Since the integral will only give a significant contribution near y = wL, i.e. z = 0,
we expand ρ(y) into a Taylor series to first order,

ρ(wL+z) ≈ ρ(wL) + ρ′(wL)z. (6.52)

Defining ρ ≡ ρ(wL), ρ′ ≡ ρ′(wL) and χ∞+
1 ≡ χ∞+

1 (wL), we find

εA =
(
χ∞+

1

)2 ∞∫
0

dz exp (−2ρz)×

[(
k∞+

x,1 + kF
wL − z

rc

)
exp (ρ′z2)

1− zρ′/ρ
+

(
k∞+

x,1 + kF
wL + z

rc

)
exp (−ρ′z2)

1 + zρ′/ρ

]
. (6.53)

Expanding the term in square brackets in powers of z gives

[. . .] = 2

(
k∞+

x,1 +
kFwL

rc

)
+O(z2). (6.54)

Dropping the quadratic term, the evaluation of the integral becomes trivial and
leads to

εA =

(
χ∞+

1

)2
ρ

(
k∞+

x,1 +
kFwL

rc

)
, (6.55)

with χ∞+
1 and ρ both evaluated at y = wL. The next step in our calculation of

εA, and, ultimately, of the localization length ξ, is to find an expression for the
value of the transverse wave function χ∞+

1 (wL) and for the longitudinal momentum
eigenvalue k∞+

x,1 .

To do this, we rewrite the effective transverse Hamiltonian Hy, following from
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Eq. (6.7), defining yz = y0 + rc:

Hy =
p2

y

2
+ EF

[(
y − y0

rc

)2

− 1

]
, (6.56a)

Hy =
p2

y

2
+
k2

F

2

[(
y − yz

rc

)2

+ 2
y − yz

rc

]
, (6.56b)

Hy =
p2

y

2
+ V (y), (6.56c)

where V (yz) = 0. Since the WKB solution diverges near the classical turning
point, we linearize the potential in this region (i.e. drop the quadratic term), which
makes it possible to solve the effective Schrödinger equation analytically. This is
a standard procedure in WKB to connect the classically allowed and forbidden
regions, which goes back to Langer [67, 68]. The complete wave function is thus
constructed by connecting the solution of the linearized potential near the classical
turning point to the WKB solution in the classically forbidden region.

Performing the linearization and substituting z = (2k2
F/rc)

1/3(y − yz) simplifies
the Schrödinger equation Hyχ(y) = 0 to(

∂2

∂z2
− z

)
χ(z) = 0. (6.57)

This equation is known as Airy’s differential equation and has two linearly inde-
pendent solutions, Ai(z) and Bi(z). As Bi(z) diverges exponentially for large z, the
solution satisfying our boundary conditions only contains Ai(z), which is shown in
Fig. 6.5. It is defined by

Ai(z) =
1

π

∞∫
0

dt cos

(
1

3
t3 + zt

)
. (6.58)

The boundary condition at the lower wall demands that χ(y=0) is equal to zero,
so that z(y = 0) must be a zero of the Airy function Ai(z). Since we want the
solution for the first mode, we choose the first zero at z = Ai0 ≈ −2.338 (indicated
in Fig. 6.5), such that the wave function has no zeros apart from these at the
boundaries. From this follows that

yz = −
(
rc

2k2
F

)1/3

Ai0, (6.59)

z = Ai0 +

(
2k2

F

rc

)1/3

y, (6.60)
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Figure 6.5: Airy Function Ai(z) in the range z ∈ [−16; 6].

or, inserting yz = y0 + rc and then y0 = −rckx/kF into Eq. (6.59),

k∞+
x,1 = kF

[
1 +

Ai0
21/3

(kF rc)
−2/3

]
. (6.61)

We thus see that the longitudinal momentum of the first mode k∞+
x,1 is only mar-

ginally smaller than the Fermi momentum kF for large kF (remember that Ai0 is
negative). The maximum of the first transverse mode is between z = Ai0 and z = 0
(cf. Fig. 6.5), i.e. between y = 0 and y = yz. Since yz approaches y = 0 for large
kF , the wave function stays closer and closer to the wall for increasing kF .

The transverse wave function near the classical turning point can now be written
as

χ∞+
1 (y) = C1 Ai

(
Ai0 +

(
2k2

F

rc

)1/3

y

)
. (6.62)

We will construct the full solution for the wave function by using the Airy function
near the classical turning point and the WKB solution (which takes the quadratic
potential into account) in the classically forbidden region. Before proceeding, we
determine the prefactor C1. Since the WKB solution is only used in describing
the exponential tail for y � yz, calculating C1 with the wave function (6.62) of the
linearized potential will only introduce a small error. Therefore, we insert Eq. (6.62)
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into the flux normalization condition Eq. (6.9) and obtain

1 =

∞∫
0

(
2k∞+

x,1 + 2kF
y

rc

)[
χ∞+

1 (y)
]2

dy, (6.63)

1 =

(
rc

2k2
F

)1/3
∞∫

Ai0

[
2k∞+

x,1 +
2kF

rc

(
rc

2k2
F

)1/3

(z − Ai0)

]
C2

1 Ai2(z)dz, (6.64)

1 = 22/3(kF rc)
1/3C2

1

[ ∞∫
Ai0

Ai2(z)dz

︸ ︷︷ ︸
γ0

+
1

21/3 (kF rc)
2/3

∞∫
Ai0

zAi2(z)dz

︸ ︷︷ ︸
γ1

]
, (6.65)

where the two integrals in (6.65) just give constants which we call γ0 and γ1. We
therefore find that

C1 =

[
22/3(kF rc)

1/3

(
γ0 +

γ1

21/3 (kF rc)
2/3

)]−1/2

, (6.66)

which in the limit of large kF simplifies to

C1 ≈
[
22/3(kF rc)

1/3γ0

]−1/2
. (6.67)

Since we need to evaluate the transverse wave function χ∞+
1 at y=wL, which is

deep in the classically forbidden region, we proceed by connecting the Airy function
(valid near the classical turning point) to the WKB solution (valid in the classically
forbidden region). We write the WKB solution as

χ∞+
1 (y) ≈ C2√

ρ(y)
exp

− y∫
yz

ρ(y′)dy′

 y � yz, (6.68)

and from a short calculation (cf. Appendix A) we obtain that the two constants
C1 and C2 are related by

C2 =

(
2k2

F

rc

)1/6
C1

2
√
π
. (6.69)

For evaluating the integral in Eq. (6.68), we insert the explicit form of the po-
tential. We take y = wL as the upper limit of integration since we need the wave
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function at that point for evaluation of Eq. (6.55),

ρ(y) = kF

√
V (y)/EF ,

ρ(y) = kF

√
2
y − yz

rc

+

(
y − yz

rc

)2

,
(6.70)

wL∫
yz

ρ(y′)dy′ = kF rc

z∫
0

√
2z′ + z′2dz′ z =

wL − yz

rc

, (6.71)

and evaluate the integral by expanding the integrand in powers of z′

wL∫
yz

ρ(y′)dy′ =
√

2kF rc

z∫
0

(
z′1/2 +

z′3/2

4
+O(z5/2)

)
dz′, (6.72)

wL∫
yz

ρ(y′)dy′ ≈ 2
√

2

3
kF rcz

3/2

(
1 +

3

20
z

)
. (6.73)

Inserting this into Eq. (6.68), we obtain

χ∞+
1 (wL) ≈ C2√

ρ(wL)
exp

(
−2
√

2

3
kF rc

(
wL − yz

rc

)3/2(
1 +

3

20

wL − yz

rc

))
,

(6.74)

yz = −
(
rc

2k2
F

)1/3

Ai0. (6.75)

Since yz � rc in the limit of large kF , we rewrite this as

χ∞+
1 (wL) ≈ C2√

ρ(wL)
exp

(
−2
√

2

3
kF rc

(
wL

rc

)3/2(
1 +

3

20

wL

rc

)(
1− yz

wL

)3/2
)
,

(6.76)
where we have omitted the term

1− 3

20
(
1 + 3

20
wL

rc

) yz

rc

≈ 1, (6.77)

which represents a small correction of higher order in inverse powers of kF .
To get our almost final expression for εA, we insert Eq. (6.76) into Eq. (6.55) and

obtain

εA = C3 exp

(
−4
√

2

3
kF rc

(
wL

rc

)3/2(
1 +

3

20

wL

rc

)(
1− yz

wL

)3/2
)
, (6.78a)

C3 =
C2

2

ρ(wL)2

(
k∞+

x,1 +
kFwL

rc

)
. (6.78b)
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We insert ρ from Eq. (6.49), C2 from Eq. (6.69) and then C1 from Eq. (6.67) to
determine C3,

C3 =
(kF rc)

−2/3

21/34πγ0

k∞+
x,1 /kF + wL/rc

2(wL − yz)/rc + ((wL − yz)/rc)
2 . (6.79)

6.2.1 Localization length ξ in the quasi-classical limit

To obtain our final result for the localization length ξ in the quasi-classical limit of
large kF , we insert Eq. (6.79) and Eq. (6.78) into the expression Eq. (6.22) for the
localization length ξ. To perform a true quasi-classical limit, we keep the cyclotron
radius rc constant, such that the classical dynamics is independent of kF . This
leads to

ξ

l
≈ M

4C3

exp[. . .]. (6.80)

We expand the prefactor M/(4C3) in powers of kF for kF → ∞, keeping the first
two terms in the expansion since they are of similar magnitude for the parameter
values used, and finally obtain

ξ

l
=
(
α1η

2/3 + α2

)
exp

[
α3η(1− α4η

−2/3)3/2
]
, (6.81)

where η = kFW/π and the dimensionless parameters α1, α2, α3 are given by

α1 = 21/3π5/3Mγ0
∆

ζ1/3

(
2 + ∆/ζ

1 + ∆/ζ

)
, (6.82a)

α2 = πAi0Mγ0

(
1 +

ζ2

(∆ + ζ)2

)
, (6.82b)

α3 =
4
√

2π

3

∆3/2

ζ1/2

(
1 +

3

20

∆

ζ

)
, (6.82c)

α4 = − Ai0
21/3π2/3

ζ1/3

∆
, (6.82d)

where we have introduced the dimensionless parameters ∆ = wL/W = 1−(δu/2W )
and ζ = rc/W . As we predicted by general arguments about phase space and tun-
neling probabilities in the quasi-classical limit in section 5.2, we see an exponential
increase of the localization length with η ∝ kF .

With our parameter values of ∆ = 2/3, ζ = 3 and M = 20, and inserting the
numerical values Ai0 ≈ −2.33811 and γ0 ≈ 0.49170, the three parameters have the
following values:

α1 = 70.17, (6.83a)

α2 = −120.59, (6.83b)

α3 = 1.924, (6.83c)

α4 = 1.872. (6.83d)
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Figure 6.6: Localization length ξ for a wire with one-sided surface disorder in a
magnetic field, plotted against η. For comparison, ξ for wires with TSD and for
OSD without a magnetic field are shown. The analytical result for ξ from Eq. (6.81)
is also shown and reproduces the observed behavior very well.

The agreement of the numerical results in section 5.2 with the present calcula-
tion is excellent, especially considering the numerous approximations made in the
calculation. This was shown in Fig. 5.10, repeated here (Fig. 6.6) for clarity. We
stress that no fit parameters were used.

6.2.2 Localization length ξ for high Fermi momentum kF

and constant magnetic field B

We can also perform the limit of kF →∞ at constant magnetic field B instead of
constant cyclotron radius rc = ckF/B. In that case, the limit does not correspond to
a pure quantum-to-classical crossover, as the classical dynamics is not independent
of kF . To obtain dimensionless parameters, we introduce the magnetic length λ
through B/c = 1/λ2 and the dimensionless parameter Λ = λ/W . As above, we use
∆ = wL/W and obtain

ξ

l
=
(
β1η

1/3 + β2

)
exp(β3η

1/2(1− β4η
−1/3)3/2), (6.84)
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with the dimensionless parameters β1, β2, β3, β4 given by

β1 = (2π)4/3Mγ0
∆

Λ2/3
, (6.85a)

β2 = 2πAi0Mγ0, (6.85b)

β3 =
4
√

2π

3

∆3/2

Λ
, (6.85c)

β4 = − Ai0
(2π)1/3

Λ2/3

∆
, (6.85d)

The leading factor in the exponent of Eq. (6.84) is the square root of the Fermi
momentum kF . As discussed in subsection 5.2.2, the square root enters because the
relative size of the regular island in phase space shrinks when we keep the magnetic
field strength B constant while increasing kF .

As for the case of constant cyclotron radius, we find excellent agreement of the
numerical result for ξ with the predicted behavior: An exponential increase of the
localization length, but with the square root of kF in the exponent. This was shown
in Fig. 5.11, and is repeated here (Fig. 6.7) for clarity.
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Figure 6.7: ξ for a wire with one-sided surface disorder in a magnetic field, plotted
against

√
η. In this figure, the magnetic field B is held constant. We also show the

prediction Eq. (6.84) for ξ from the analytical calculation. The prediction reproduces
the observed behaviour very well.

It is worth listing the approximations used in our derivation of the above expres-
sions (6.81) and (6.84). First, we neglected all non-direct paths for transmission
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of the first mode into itself. We can estimate these paths to contribute on the
same order of magnitude as the direct path. Including them would considerably
complicate our derivation, but should only change the prefactors α1, α2 and β1, β2

in our result, since the order of the contribution is the same as that of the direct
path.

Similarly, we neglected a term in our wave function matching that contains prod-
ucts of rm1 and an integral over the product of χL−

m (y) and χR+
1 (y), where both rm1

and the integral can be shown to be of order O(
√
ε). This sum was also analyzed

numerically by employing the implementation of the system of two leads of different
width connected to each other and found to correspond to a correction of about
20% to the localization length ξ. Neglecting this term left us with an integral over
the product of the first transverse modes in the left and right lead to determine
ξ, which we evaluated by replacing the first mode in the wider lead by that of an
infinitely wide lead and expressing the first mode in the narrower lead as a sum of
the mode in the infinitely wide lead and a small correction.

We then employed a combined approach of linearizing the potential near the
classical turning point and using a WKB approximation in the classically forbidden
region to calculate the remaining integral. Finally, we expanded the obtained result
for the case of high Fermi momentum kF and constant cyclotron radius rc [constant
magnetic field B] to arrive at the simple expression (6.81) [(6.84)].

We have thus shown that in our system the existence of a regular island in phase
space leads to a giant localization length in the limit of large Fermi momentum
kF , when the classical dynamics can be fully resolved by the quantum dynamics.
In that case, the coupling between the regular island and the chaotic sea proceeds
only by tunneling, which is exponentially suppressed in the quasi-classical limit.
We are able to perform this limit by keeping the cyclotron radius constant, such
that the classical dynamics stays unchanged as we increase the Fermi momentum.



Chapter 7

Summary and Outlook

Prediction is very difficult, especially about the future.
Niels Bohr

In this work we investigate electron transport in ballistic wires with surface dis-
order. Utilizing the Modular Recursive Green’s Function Method, we develop an
algorithm to simulate quantum transport up to extremely long wire lengths.

We place a particular emphasis on wires with one-sided surface disorder subject
to a perpendicular magnetic field B. For this system, the classical phase space splits
up into a regular island inhabited by skipping orbits and a chaotic sea. This mixed
phase space induces diverging localization lengths in the quantum calculation if the
quasi-classical limit of high Fermi momentum kF is taken.

By employing the fact that the classical dynamics only depends on the cyclotron
radius rc = ckF/B and not on kF or B separately, we are able to perform a true
quasi-classical limit in which the localization length ξ, which corresponds to an in-
verse tunneling rate, increases exponentially with kF . We additionally perform an
analytical calculation to derive the localization length by calculating the transmis-
sion of the first mode through wave function matching. This calculation reproduces
the scaling of the localization length without any adjustable parameters, although
there is an error of order one in the absolute amplitude, which we can attribute to
the approximations performed.

We explain the intermode coupling for modes on the regular island by chaos-
assisted tunneling through a simple model that only utilizes the localization lengths
ξm of the individual modes. These localization lengths correspond to the inverse
tunneling rates off the island. Our model leads to a prediction for the values of the
transmission probabilities Tm1 from the first mode in the left lead to a mode m in
the right lead that is found to be very accurate. The model employed for deriving
these probabilities does not include any additional fit parameters apart from the
localization lengths of the individual modes, which are determined independently.

A further topic that could be studied using the methods and algorithms pre-
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sented here is the distribution of transmission eigenvalues. For example, deep in
the localized regime, where the conductance is much smaller than one, g � 1, the
distribution of the conductance should be log-normal, i.e. the distribution of the
logarithm of the conductance should be Gaussian [11]. For shorter wires at the
onset of localization, where the conductance is only slightly smaller than one, this
distribution has been predicted to change to a one-sided log-normal distribution
with a sharp cutoff above g = 1 [13, 69].

Another possible topic for further study could be the behavior of the modes that
live in the chaotic sea, outside the regular island. In very recent work, this has
been investigated classically [70] for a system similar to ours.

There is also the possibility of using not only rectangular modules to simulate
wires with surface disorder. For example, a rectangle with a half-circle on top can
be easily calculated using the MRGM. This could be an interesting alternative to
the current system with only rectangular modules.

A further possibility would be to include bulk disorder into the system by adding
random site energies in our tight-binding Hamiltonian. In this way, a crossover from
exponentially large localization lengths to the RMT predictions for bulk disorder
could be studied. This would also give the possibility to model the experimental
situation of low but not completely vanishing bulk disorder. Another way of in-
corporating bulk disorder would be by the inclusion of hard point-like scatterers,
which could be realized by setting the hopping potential from one module to the
next to zero at some points.

Finally, our algorithms could be easily adapted to study the properties of a series
of quantum point contacts, created by connecting a number of ballistic cavities to
each other via point contacts, i.e. constrictions or shutters. Such systems have been
investigated both experimentally and theoretically, with an emphasis on the study
of shot noise [71].



Appendix A

Connection of WKB solution to
the solution for the linearized
potential

In this section we derive how we can smoothly connect the WKB solution for
the classically forbidden region with the solution for the linearized potential near
the classical turning point. We can do this generally without using the specific
properties of our potential.

We write the Schrödinger equation for a 1-dimensional system with potential
V (y) as (

− ∂2

∂y2
+ V (y)

)
χ(y) = Eχ(y), (A.1)

where we assume that the potential increases monotonously with y, such that there
is some classical turning point yz for which V (yz) = E and V (y > yz) > E. The
region y > yz is the classically forbidden region, where we can write the WKB
solution as [67]

χ∞+
1 (y) ≈ C2√

ρ(y)
exp(−κ(y)) y � yz, (A.2)

κ(y) =

y∫
yz

ρ(y′)dy′, (A.3)

where ρ(y) =
√

2[V (y)− E]. Near the classical turning point yz, where ρ(yz) = 0,
this WKB solution diverges. To obtain a solution in that region, we linearize the
potential around yz, such that

V (y) ≈ V (yz) + V ′(yz) · (y − yz). (A.4)
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Inserting this into the Schrödinger equation (A.1) and using V (yz) = E, we
obtain (

− ∂2

∂y2
+ V ′(y) · (y − yZ)

)
χ(y) = 0, (A.5)

which we can simplify by substituting

z = c · (y − yz), (A.6)

c = (2V ′(yz))
1/3, (A.7)

such that the Schrödinger equation becomes(
∂2

∂z2
− z

)
χ(z) = 0. (A.8)

This has the two general solutions Ai(z), shown in Fig. 6.5, and Bi(z), which
diverges for large z. In our case we only keep Ai(z) and write the solution near the
classical turning point as

χ(z) = C1 Ai(z). (A.9)

To connect this with the WKB solution in the classically forbidden region, we
use the asymptotic expansion of the Airy function Ai(z) for large z,

Ai(z) ≈ 1

2
√
πz1/4

exp

(
−2

3
z3/2

)
z � 0. (A.10)

For y > yz, we thus have two solutions for the wave function, the first coming
from the linearization of the potential,

χlin(y) =
C1

2
√
πz1/4

exp

(
−2

3
z3/2

)
, (A.11)

and the other from WKB,

χWKB(y) =
C2√
ρ(y)

exp(−κ(y)) (A.12)

Close to the classical turning point, we can expand ρ(y) as

ρ(y) ≈
√

2V ′(yz)(y − yz) = bz1/2, (A.13)

and consequently,

κ(y) =

y∫
yz

ρ(y′)dy′ ≈
z∫

0

z′1/2dz′ =
2

3
z3/2. (A.14)
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Inserting the last two expressions into Eq. (A.12) and comparing to Eq. (A.11)
shows that the two solutions agree for

C2 = C1 ·
√
b

2
√
π
. (A.15)

We use this result in Eq. (6.69), with

b =

(
2k2

F

rc

)1/3

(A.16)

for the specific system discussed in chapter 6.
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